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Early-time critical dynamics of lattices of coupled chaotic maps
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The early-time critical dynamics of continuous, Ising-like phase transitions is studied numerically for two-
dimensional lattices of coupled chaotic maps. Emphasis is placed on obtaining accurate estimates of the
dynamic critical exponent8’ andz. The critical points of five different models are investigated, varying the
mode of update, the coupling, and the local map. Our results suggest that the nature of update is a relevant
parameter for dynamic universality classes of extended dynamical systems, generalizing results obtained pre-
viously for the static properties. They also indicate that the universality observed for the static properties of
Ising-like transitions of synchronously updated systems does not hold for their dynamic critical properties.
[S1063-651%98)12502-3

PACS numbdps): 05.45+hb, 05.70.Jk, 64.60.Cn, 47.27.Cn

I. INTRODUCTION to early conclusions based on simulations of much smaller
systemg5], careful analysis of finite-size data obtained from

The last decade has seen considerable experimental, nextensive numerical simulations of the Miller-Huse model
merical, and analytical effort aimed at better understandinghows that the corresponding phase transition does not be-
the sustained spatiotemporally chaotic regimes of large, hdeng to the Ising universality clasg7,8]. The measured
mogeneous systems kept far from equilibrium by an externatorrelation-length exponent=0.89+0.02 is significantly
driving force. In particular, detailed investigation of a num- lower thanvg,,=1, while exponent ratiog/v and y/v re-
ber of hydrodynamical flow regimes, including convection, main in good agreement with Ising values. Comparison with
shear flow, and crispation experiments, has led to a wealth agtlated models, in particular with transitions of sequentially
interesting insights into the properties of spatiotemporalpdated lattice dynamical systems, further indicates that syn-
chaog1]. Important pending questions concern the status ofhronous update is the relevant parameter responsible for
the asymptotic limit of long time and large system size, agleparture from Ising universality: keeping all other features
well as the relationship that may exist between classicabf the Miller-Huse model unchanged, Ising static exponents
equilibrium statistical mechanics and possible statistical deare recovered as soon as sites are updated sequefsiglly
scriptions of spatiotemporal chaos in this “thermodynamic” Our main objective is to extend previous work on static
limit [1,2]. critical exponents to the dynamic critical properties of the

This article focuses on the critical behavior of models ofMiller-Huse model. The dynamic critical exponentwhich
spatiotemporal chaos close to second-order-like phase tragquantifies the algebraic divergence of coherence times at
sitions that occur in the thermodynamic limit. Theoretical criticality, is known to be sensitive to parameters otherwise
work [3] has suggested that phase transitions in generic norirrelevant for static exponents, such as the existence or ab-
equilibrium systems made up of locally interacting subunitssence of macroscopic quantities conserved under time evo-
belong to the universality class of model [4], for both  lution [4]. In addition, the nature of update is a relevant
static and dynamic critical exponents, provided that the ordeparameter for dynamical universality classes of Ising sys-
parameter is a nonconserved, scalar quantity. Being based ¢®ms: synchronous update of clusters of spins yields distinct,
coarse-grained Langevin descriptions, the approach devesignificantly lower values of the dynamic exponerthan is
oped in[3] overlooks the exact nature of microscopic time observed for standard sequential or checkerboard update
evolution. Its conclusion also relies on the validity of as-[10]. Ignoring both the conjecture ¢8] and the numerical
sumptions generally associated with the dynamic renormalesults of[8], one may thus naively expect phase transitions
ization group formalism. of synchronously and sequentially updated CMLs to be char-

Another significant contribution is that of Miller and acterized by different dynamical exponents. Here, we want to
Huse. In[5], they introduce a simple lattice dynamical sys- confirm, for the dynamic properties of Ising-like transitions
tem with microscopic Ising symmetrisquare lattice of lo- of lattices of coupled chaotic maps, the relevance of the
cally coupled, chaotic, odd mapsvhose salient feature is mode of update already discovered [i8] for their static
the presence of a nonequilibrium continuous transition qualiproperties. Similarly, the static universality class observed
tatively similar to the ferromagnetic critical point of the two- for synchronously updated models is revisited from the point
dimensional Ising model. Ising-like transitions between spaof view of their dynamical properties.
tiotemporally chaotic phases turn out to be a fairly common Compared to Ising systems, the measurement of static
feature of coupled maps lattic€EMLSs): they are observed critical exponents turns out to be significantly more resource
for a variety of local maps, lattice geometries, and updateeonsuming in the case of CMLs, due in particular to the
rules[6—9]. However, contrary to the conjecture [#] and  presence of unusually large corrections to scalBigMore-
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over, extracting reliable values of dynamic critical exponents Il. EARLY-TIME CRITICAL DYNAMICS
from direct simulations is a notably difficult task, evenan AT SECOND-ORDER TRANSITIONS
priori simpler cases. Despite much numerical effort, the

vailue of th_e dynamical exponentof model A in dimension numerical simulations of finite-size systems, most methods
d=2 remains somewhat controversiae[11] for a survey  qonsidered until a few years ago made use of the so-called
of work done prior to 1993, anflL2] for a more recent re- snlinear relaxation regime, by, e.g., looking at the decay of

view). The methodology we apply here to phase transitiongne system’s time-dependent magnetizatd(t) according

of CMLs is based on recent theoretical work by Janssefg

et al, which proves the existence of a new universal regime

in the early critical dynamics of systems starting from non- M(t)~t= A2, 1
equilibrium (e.g., completely disordergdnitial conditions

[13,14]. This regime, termed “initial critical slip” or “uni-  OF similar relations involying higher-order moments. This_re-
versal short-time behavior” in the literature, is characterizeddime was generally believed to be relevant within the time
by a new nontrivial exponent’, unrelated to the usual static interval 1<t_<tL, whereas 1‘Z|n|te—S|ze linear relax_atlo_n even-
and dynamical exponents. The dynamical exponghandz ~ tually prevails beyond, =L* where the magnetization de-
can be readily obtained from the initial scaling properties ofcaYS ex.ponent|aIIyM(t)~.exp(—t/tL). .
observables of finite-size systems, as shown analytically irt]heAir%%g:tg\r/]irelogrierﬂtiuarl]tiézzi\'gl(())rr]z Ofsﬂ?)?)f)sszn?rié[tla]/elsstart
[15], and first |mp_lemented numerlcally [a6]. Unlike sta_nj from disordered nonequilibrium initial conditionmagneti-
dard methods, this procedure is nearly free from the difficul-

i iated with critical slowing d t the t it zation is zero or very close to zerwith very short initial
s associated with critical slowing down at the ransition s, e |ation length, and quench the system to its critical point.
point: useful simulation timesT(~10°—10®) are typically

o \ . One qualitatively expects fluctuations to be negligible at
much shorter than the finite-size coherence time stgle first: the system is then mean-field-like. Since the mean-field
~L* Statistical accuracy is ensured by ensemble averagingitical temperature is usually larger than the actual critical
over a large number of independent realizations. Thanks tmperature, the system is in its ordered phase, and the mag-
high numerical efficiency, good agreement on the value ohetization(and correlation lengthwill want to grow. This
critical quantities such a8’ andd/z— ¢’ has been already accounts for initial magnetization growth. There is of course
reached for model A17-19. This makes comparison with a crossover point, after which the system’s behavior reverts
other systems easier, and opens the way to an investigatiao the usualrelaxational behavior of Eq.(1).
of the relative universality of and #’, which, based on the This qualitative idea has been formalized, and the influ-
theoretical work of Jansseet al. [13,14], are expected to ence of initial conditions on renormalization-group transfor-
depend on the same relevant parameters. mations investigated in detail for bulk systefis8,14]. Let

This article is organized as follows: current understandingno be the initial magnetization at tinte=0. This field gives
of early time critical dynamics is briefly reviewed in Sec. Il. Way to a new scaling index, independent of already known
The methodology we follow closely parallels that used byones (both static and dynamicaland to a time scale,
Okanoet al. for the two-dimensional Ising model with heat- Within which a new universal scaling regime sets in. The
bath and Metropolis algorithrfil9]. The same procedure is NeW exponent’ is universal in the same sense as the usual
used throughout, thus allowing meaningful comparison pedynamic cr|t|_cal exponert, since it was obtained within the
tween exponents obtained for different CMLs, as well ass@me formalism. Foty.<t<to, andm, small enough, the
with exponents of model A. First, the dynamic critical prop- Magnetization grows as a power law:
erties of the Miller-Huse model, a lattice dynamical system
with synchronous update, are investigated in Sec. lll. The

model and its phenomenology are introduced in Sec. Il Ay 1o re 0’ =(xo— B/v)/z. The microscopic time . is the

Simulations pertaining to the measure of the critical €XPOyime after which macroscopically correlated regions form,
nents§’ andz are next described in Sec. IlIB and IIIC, o regions large compared to the microscopic length scale,
respectively. In Sec. IV, we investigate the role played by then this case the lattice constant. The time evolution of ob-
type of update for the dynamic critical properties of Ising- servables fot<t,y,. is nonuniversal, and depends on micro-

like transitions, in order to extend its relevance, already esscopic features of the model. The crossover tigés ob-
tablished in[8] at the static level. In Sec. IV A, we first tained by matching Eqg1) and (2):

consider a sequentially updated model introduced8h

which, according to previous numerical results, belongs to to~ mgxo/z, 3

the Ising universality class for static critical exponents. In

Sec. IV B, we turn to Sakaguchi's modg], a CML with  and diverges in the limit of zero initial magnetization. In
checkerboard update whose static critical exponents ardat case, the nonlinear relaxation regime is not observed in
known exactly to be equal to those of the Ising model. Nextthe bulk.

we consider, in Sec.V, various synchronously updated mod- Then, finite-size scaling theory was introduced [B].

els to investigate whether the universality of the static criticaMWe will need it for interpretation of numerical experiments.
properties of their Ising-like transitions extend to their dy- The scale-invariant expression reads, for a system of finite
namic exponents. Our results are summed up and discussseite L, and thekth moment of the order parameter, at the
in Sec. VI. critical point:

In order to measure the dynamic critical exponeffitom

M (t)~mgt?, @)
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TABLE I. Update is a relevant parameter for dynamic critical exponents: a summary of numerical
estimates of the dynamical exponeidts £, z (obtained from{) and &, for three models with synchronous
(Miller-Huse model, Sec. I)| sequentialSec. IV A), and checkerboar@Sakaguchi’'s model, Sec. 1V)B
update. The exponent values given for model A are discussed in Sec. Il. Numbers in brackets correspond to
the uncertainty on the last di¢s, e.g., 0.193(5) means 0.19%.005.

Model A Miller-Huse Sequential Sakaguchi
Critical point IN(1++/2)/2 0.20534(2) 0.11255(5) IN(1++/2)/2
0’ 0.193(5) 0.146(9) 0.06(1) 0.194(14)
{=(d—-28Iv)/z 0.808(6) 0.839(3) 0.83(6) 0.82(2)
z 2.165(15) 2.07(2) 2.12(15) 2.13(5)
o=dlz— o' 0.74(1) No estimate 0.78(8) ~0.75

MO(t,L,mg) =b *"MM(b~2%t, b~ 1L, b*omy), (4) rithmsl, thanks Fo s]ightly different mgthods. We use a con-
servative combination of the two estimates as our reference

. : . : . value:
whereb is a scaling factor ant¥1 ¥ is a universal function,

independent of microscopic details of the system. An impor-

tant point is that the exponeatin Eq. (4) is the same as the Omodel A= 0-1935). (10
usual one[4]. Choosing the arbitrary prefactor equal tho
~1t12, one obtains Excellent agreement has also been reached for the combina-
tion 6=d/z—6’, obtained from Eq(8), between the early
M(k)(t,L,mo)=t‘k5”’zl\7|<">(t/t,_,t/to), (5) measures of Huse and of Humayun and Bifdy] [¢§

=0.741), heat-bath algorithfhand a recent confirmation by
wheretozm_xolz andt,_=LZ For a finite-size system and Okanoet al.[19] [5=0.739(5)]. Our conservative estimate

0 .
evolution timest<ty,t, , one obtains is thus

M(t)~m0t”' (6) Omodel A= 0.741). (11

for small values oimg [13]. This allows one to measum The case of the dynamic critical exponeris more delicate.
directly. Then, assuming that the value Bfv is already Estimates using methods derived from the theory of early-

known, z can be obtained thanks to the relatidrp] time critical dynamics vary between 2.155(8)eat bath
[19], 2.137(11)(Metropolig [19], and 2.143(5)heat bath
M@(t)~t¢ with {=(d—28/v)lz, (7)  [20]. These estimates are somewhat lower than the currently

accepted value=2.165(15)[12], obtained from both series
as used for model A ifl9]. Finally, careful renormalization expansions[z=2.165(15), data fron{21] reanalyzed by
group analysis leads to the following scaling form for the Adler, see[12]] and from a number of direct simulations of

order-parameter time correlation function very large systems: 2.165(1@ponlinear relaxatior11]),
A(t)=(m(t)m(0)) (cf. explicit derivation in[14]): 2.172(6) (damage spreadinfl8]), 2.160(5) (nonlinear re-
laxation[22]). Since the latter generally correspond to sig-
A(t)~t~? with s=d/z—¢’, (8 nificantly better statistics and larger system sizes, we choose

where the space dimension is denoted
Note that finite-size scaling relations may also be used in
order to measure and B/v [20]:

Zmodel p= 2.16515) (12

as our reference value. It leads to the combinatfen(d
U(t,L)=U(b%,bL) —2B/v)/z=0.8086), for B/v=1/8, in reasonable agree-
’ T ment, within error bars, with the value obtained from Ef).

M(Z)(t,L):bzﬂ/yM(z)(bZt,bL). (9) in [19]: §20.8117).
We choose not to, since finite-size effects seem to be either IIl. DYNAMIC CRITICAL EXPONENTS
negligible, or easily controlled in cases relevant h&see OF THE MILLER-HUSE MODEL

below).

To conclude this section, we briefly review recent work
on the critical dynamics of model A. The relevant exponent Recently, Miller and Huse introduced a CML designed to
values are gathered in Table |. The exponéhthas been be a simple nonequilibrium Ising-like modgb]. Its local
measured twice according to E(), first by Grassberger map, which provides the “reaction” part of this reaction-
[18] [#'=0.1913), heat-bath dynamids then by Okano diffusion lattice dynamical system, is an odd, piecewise-
et al. [19] [#'=0.1944), heat-bath and Metropolis algo- linear, chaotic map of the real intervial- 1,1]:

A. The model
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_ 1 netizationmg. They are generated easily by the following
—3x=2 |if —1$X<—§. procedure. Fom,=0, assign real random numbers; ()
uniformly distributed orf 0,1] to L?/2 randomly chosen sites
of the lattice. Assign then the opposite valuesx ;) ran-
' (13 domly to the remainind /2 sites: the total magnetization is
then exactly zero. In order to obtain a small but nonzero
—3x+2 if lsxs 1. initial magnetization, implement the same procedure, but
. 3 based on I(2—K)/2 randomly chosen sites. Then set the
value of theK other sites to, e.gx=1. The magnetization is
The constant absolute value of the slope being equal to thregys equal tany,=2K/L2. We have checked that this particu-
its Lyapunov exponent is positive and equal to In3. For thear choice does not influence the scaling properties described
simple case of a two-dimensional square lattice, the evoluin the following. Choosing= 1 possesses the advantage that
tion rule reads the initial magnetization has the same value whether consid-
41 N ‘ N ‘ ering discrete spinﬁi"j or the original continuous variables
Xi ;7= (1=4g)F(x; ) +9(F(Xi_ 1) + (X j_ ) +F(Xi 1)) Xitj )
"The value of the critical coupling strength was previ-
ously obtained according to Binder's method. We use

wheret denotes thediscrete time, and the subscripts the 9c=0.205 34(2)[8]. As predicted i 13], a regime of initial
position on the lattice. The nearest-neighbor coupling con@rowth of the magnetization is observed, as well as the cross-
stantg can vary between 0 and 1/4. In the following, all Over toward nonlinear relaxation for large enough initial
numerical calculations are performed on square arrays of lindagnetizationm,. The corresponding coarsening process is

f(x)={ 3x if — —1 —1
= =x<
(x)=1 3 X 3

+F(X j+1)), (14

ear sizeL with periodic boundary conditions. illustrated in Fig. 1. For measurement purposes, we Kise
Sincef(x) is an odd function ok, discrete spin variables =2.4.6,8,10, for sizes ranging betwekr-16 andL =128.
can be defined in a natural fashion: The duration of a run isST=128. In such conditions, no
crossover to the nonlinear relaxation regime is observed,
o ;=sgnx ;) e{-1,1. (15  sincety,>T. Thanks to the good quality of our data, the value

_ S of the microscopic time ;=5 can be obtained by simple
Next, the fluctuating, space-averaged magnetization is desisual inspectior(Fig. 2). This relatively small value is com-

fined as parable to what has been observed for the two-dimensional
Ising model[19]. Scaling of the magnetization versus time is
t :i t observed over the time intervakBi<128. This corresponds
m=—=> of;. (16) ed over 1 , ,
L=57 " to the initial critical slip regime.

The exponentd’ is measured thanks to a linear fit in

In fact, one can also use a definition of the “magnetization”|og_|og scale over the interval,.<t<T. We checked that
based on the original continuous variabhé’?. This does not  ysing larger values of,. and/or T does not alter the esti-
alter significantly the statistical results, as we mention in themate. Note also that using values of the critical coupling
following. outside the confidence intervgy=0.20534(2) does not lead

Increasing the coupling constagt the only control pa- to an improved quality of fits: this confirms the validity of
rameter in this system, an Ising-like phase transition takegstimates of the critical coupling obtained[#].
place from a disordered phase with zero average magnetiza- Ensemble averages are performed over 512 000 realiza-
tion at weak coupling to an ordered phase at strong couplingions for L<64, 128 000 realizations fdr=128. Statistical
where the spins tend to be aligned with each other. The ordesrrors are estimated by comparing the exponent values ob-
parameter is the magnetizatioh =(|m[|), where the tained for five different initial magnetizations,=2K/L?,
brackets represent in practideng) time averagesgergodic- K=2,4,6,8,10. Error bars take into account the uncertainty
ity is assumey on g.. Note that the corresponding valuesraf are much

Note that chaos is extensive in this systgi and that  smaller than those used by Okaebal, who needed to ex-
dynamical quantifiers, such as the Kolmogorov-Sinai entrapolate exponent values obtained for small but finite initial
tropy, seem to be insensitive to the onset of long-range ordahagnetization to the limitn,=0. Our procedure is similar to
at least for the finite-size systems for which these calculathat used by Grassberg¢i8], since no extrapolation is
tions can be made. Only one length scale, the correlationeeded. The exponent values thus measured Lfor
length &, diverges in the thermodynamic limit. This proves =32,64,128 are respectively’ =0.14§2), 0.142(4) and
that the transition exists in the thermodynamic limit, as cor-0.14§7). Statistically equivalent values are obtained when
roborated by the applicability of finite-size scaling argu- considering the magnetization based on the continuous vari-
ments. Such an analysis allows one to measure the standaglles. Within error bars, no finite-size effect is observed for
static critical exponents, and, in particular, the deviation of_. =32, Our global(conservativg estimate is
the correlation-length exponent=0.892), from the Ising
valuev=1.[8] Oy =0.1469). 17

Note that this result imot consistent with the accepted value
for the critical dynamics of model A9’ =0.193(6) obtained

Here we want to look at the short-time dynamics of care-by similar methods and with a similar statistical quality in
fully prepared initial configurations with a given initial mag- [18,19.

B. Measure of 8’
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FIG. 1. Snapshots of the coarsening process: poditiggative

spins are represented by a bldekite) pixel on a two-dimensional
grid. This simulation of the Miller-Huse model is performed at the
critical point g.=0.205 34, for an initial magnetizatiomy=2.4
X104 (mp=2K/L?,K=2L=128). Snapshotga), (b), and (c)
correspond to evolution times=0 (completely disordered initial
condition, t=t,;.=5 (buildup of macroscopic correlationsandt
=T=128 (“initial critical slip” regime).

C. Measure ofz

A first way to measure exponeatis given by Eq.(7).

EARLY-TIME CRITICAL DYNAMICS OF LATTICES OF ...

1595

107
=
=
-3 5
10 ——— slope 0.146
I 10 100
(a) t
10”7
=
=
1070 L e
: slope 0.146
1 10 100
(b) t

FIG. 2. Measure of the dynamic critical exponefit for the
Miller-Huse model. We plot in a log-log scale the magnetization
M(t) vs timet measured at the critical poirg=g.=0.205 34.
Clear scaling is observed in all cases fert,,;=5. The solid lines
in both graphs correspond to a slope equad'te- 0.146. Grapha):
the system sizeL=128 is fixed, the initial magnetizatiom,
=2K/L? varies betweerm,=2.4x10"* and 1.2 103, for five
distinct values oK =2,4,6,8,10(from bottom to top. Good agree-
ment between slopes corresponding to different valuek slug-
gests that the limiiny— 0 is satisfactorily approximated. Grafh):
the initial condition K=6 s fixed, for system sizesL
=16,32,64,128from top to bottom. Finite-size effects are negli-

The experimental conditions are similar to those mentionedlible_- This suggests that the infinite-size limit is satisfactorily ap-
in the last section, but for an initial magnetization equal toProximated.

zero (my=0, K=0). Simulations were performed fdr

=16,32,64,128T =128, ensemble averages performed over=128), with less statistical accuracy. This allowed us to

512 000 realizations fok. <64 and 128 000 realizations for
L=128. Log-log plots of the second momewt?) vs time

check that the exponents measured do indeed correspond to
the asymptotic regimécf. Fig. 3.

show very good scaling, and lead to estimates of the combi- Here, determining the microscopic tinig;; requires ad-

nation of exponentg=(d—28/v)/z=7/(4z), assuming that
Blv=1/8 ford=2, as implied by{8]. In order to avoid in-

ditional effort, when compared to the previous case. We use
a method introduced by Okaret al. [19]. Local exponents

terferences with the current experimental uncertainty or?(t) are first measured from “local” fits limited to an inter-

B/ v—estimated to be8/v=0.131(6) in[8]—we will work
with £, and convert inta as late as possible. Longer ruip
to T=1024) were performed for large system sizds (

val of time[t,t+1t,,.]. The microscopic time,,. is defined
as the time beyond whicli(t) becomes stationary, within
statistical fluctuations. We fint},.~ 30, fort,,.=15 and all
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FIG. 3. Measure of the dynamic critical exponentfor the
Miller-Huse model. Graplia): we plot in log-log scale the second
momentM (2 (t) vs timet at the critical poing=g.=0.205 34, for
an initial magnetizatiomy=0. System sizes are=16,32,64,128
(from top to bottom. Scaling is observed fdet .~ 30. The solid
line corresponds to a slope equalge (d—28/v)/z=0.839. The
curves corresponding to=64 andL =128 (T=128) are indistin-

guishable. This suggests that finite-size effects become small fo

L=64. Data obtained fdr =128, T=1024, 32 000 realizationri-
angular symbolsshow no evidence of crossover to a distinct time-
asymptotic regime. Inset: we plot the ratib®(t)/t¢ vs timet in
log-linear scale for the values=0.817 (model A, top curvg and
£=0.839 (best fit for extrapolated value in the infinite-size limit
[see(b)], bottom curve The system size ik=128,T=128. This
graph shows that ouffinite-size data arenot compatible with ex-
ponent values expected for model A. Grajph we plot the finite-
size exponenf(L) vs system sizé, as obtained from linear fits of
the data presented in gragh) for 30<t<128. The infinite-size
estimatel= () =0.839(dashed lingis derived from the relation
£(L)=0.839+3.9L " 1*(solid line). The inset shows a log-log plot
of ¢(L)—{¢(%) vs system sizeL for the two values{=0.817
(model A and¢=0.839(measurel The latter value optimizes the
quality of a linear fit of If¢(L)—¢] vs In(L). This plot indicates that
our data arenot compatible with exponent values expected for =0.81(1). Direct, reliable estimates fa¥ remain beyond our
model A when extrapolated to the infinite-size limit.

57

sizesL considered. This value does not depend on the value
of tjo¢ for tc large enough. The microscopic time measured
here is much larger than the one estimated for the scaling of
M (t) at smallm,, as had already been observed for the Ising
model[19].

Asymptotic values of are then obtained, as before, from
a global linear fit performed in a log-log scale over the in-
terval t,;<t<T=128. As before, we checked that values
obtained do not change, within error bars, forlit,.<50.
Again, these values were independent of whether the discrete
spins or the continuous variables were used to calculate the
magnetization.

In this case, finite-size effects are sizable and can be well
controlled: we obtain values af(L) for sizes 16=L=<128,
which are monotonously decreasing and seem to converge.
Statistical errors are evaluated from a comparison of expo-
nent values measured for three coupling strength values in
the confidence intervagl0.20532,0.20536 As before, the
quality of fits does not increase when varyiggoutside this
interval. In order to evaluate the rate of convergence, we use
the ansatz

L(L)= () ~L"*, (19
where {(°) is the desired infinite-size exponent. Although
algebraic relaxation toward an asymptotic value seems natu-
ral in the context of critical phenomena, we are not aware of
any theoretical justification for Eq18). The validity of this
phenomenological ansatz is confirmed by our d&ig. 3),
which is not compatible with, e.g., exponential relaxation.
Optimizing linear fits in a log-log scale d@f(L) — {(°) ver-
susL vyields the following estimate(e)=0.839(3) (and,
incidentally, w=1.4). The Ising value 0.817 is not compat-
ible with our data plus ansat28) (see insets of Fig.)3Note

that we use here the numerical result{ 18] as a reference
value for model A. The discrepancy between our data for the
Miller-Huse model and the currently accepted vdllg] for
model A [(=0.8086), seediscussion in Sec. ]lis even
larger.

Using the theoretical, exact Ising value f8fv [8], our
estimate yieldsz=2.0844), atvariance with the model A
exponent, irrespective of the method used to estimate it,
whether it is initial critical slip[19,2( or standard methods
[12]. Using the measured valy® v=0.131(6)[8], one ob-
ins

Zwa=2.0712), (19

a conservative estimate that we endorse.

Confirmation of the previously measured values may in
principle be obtained from the scaling behavior of the corre-
lation function[Eq. (8)], with an exponené=d/z— @'. Pre-
viously measured values lead thz—6¢'=0.81(1). Even
though the runs used are the same as for the second moment
M®), in practice, scaling is not satisfactory. In particular,
local exponents),.(t) do not converge to stationary values.
Very strong finite-size corrections to the dominant scaling
are present, which preclude any effective measuremeat of
However, the observed behavior is compatible with large-
size, long-time convergence to the above vadsed/z— 6’

numerical resources.
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In conclusion, the above study of the Miller-Huse model
first shows that the regime of initial critical slip exists also
for (some deterministic systems, with the same phenom-
enology as for spin systems. Quantitatively, our simulations
lead to the conclusion that the Miller-Huse model does not
belong to the dynamic universality class of model A. Since
the mode of update is the relevant parameter explaining de-
parture from the Ising universality for static critical expo-
nents in this mode[8], one would naturally like to know
whether or not this is also true for dynamic exponents. Sec- ¢
tion 1V deals with this question, with the study of two mod-
els with respectively sequential and checkerboard update.

IV. UPDATE RULES a

slope 0.06

A. Sequential update

The model considered here is identical to the Miller-Huse ! 10 100

model except for one point: the update rule. Evolution rule
(14) is replaced by — —

—
QO

~

~

Xi§T=(1-4g)f(xf ) +9(F O + O T2 D) + X)) U ]
+H(X 1)) (20)
Sites are updated one at a time, in sequential order from the LA
top, leftmost site to the bottom, rightmost one, as in .
(L) = (2D = (38D — - —(L,D)— S0 . 1
—(1,2—(2,2—(3,2—---—(L,2)— O
00 L slope 0.06 .
—-(1L)—2L)—BL)—---—(L,L)—--- (21
where arrows indicate the order of update between sites of o) 1 10 ; 100

indices (,j). Consequently, boundary conditions are helical
in this case.(Note that this mode of update was termed F|G. 4. Measure of the dynamic critical exponetin the case
“asynchronous™ in[8].) A continuous transition similar t0 of sequential update. The magnetizatith(t), measured at the
the Ising ferromagnetic point occurs in this system too, albeitritical pointg=g.=0.11255, is plotted vs timein log-log scale.
for significantly lower coupling strength.=0.1125%5), as  Scaling is observed in all cases fert.=5. The solid line in both
measured i8] thanks to Binder's method. Iténeasurefl  graphs corresponds to a slope equalfte=0.06. Graph(a): the
static critical exponents are compatible with the static Isingsystem sizeL =128 is fixed, the initial magnetizatiomy=2K/L?
universality classs/v=0.117(12),v=1.02(7)[8]. varies betweermy=2.4x10"* and 1.2 103, for values ofK
The initial conditions to measure the early-time critical =2,4,6,8,10(from bottom to top. Graph(b): the initial condition
properties of this transition are prepared as for the Miller-K=6 is fixed, for system sizels=16,32,64,128from top to bot-
Huse model. The observed phenomenology is the same, fort@m- Finite-size effects are negligible.
comparable microscopic timg,.~5, as estimated visually
(Fig. 4). The value oft,, is confirmed by the method de- =0.146(9) or with the model A valug 6’ =0.193(5). At
scribed in Sec. Ill Qlocal exponent Finite-size effects are this stage we have no particular understanding of the low
negligible for L=32. Measurement of the dynamic critical value of ¢’ in this case. Finally, note that our data are
exponentd’ is based on sizels=32,64,128. The number of equally well fitted by a logarithmic time dependendé(t)
realizations over which ensemble averaging is performed is-In(t), for which no theoretical justification is at present
the same as before, 512 000 for 32,64, and 128 000 for available.

L =128 (see Fig. 4 Our final estimate is Measuring the exponertt is much more difficult, since
the microscopic timgor rather the time beyond which cor-
Osequentia= 0-062). (22)  rections to dominant scaling vanish and the asymptotic re-

gime sets ihis very large, of the order df,;;~21000. This is
Error bars take into account both statistical errors and thelearly shown in Fig. 5, and in particular from the plots of
uncertainty due to the error bars on the location of the criticathe local exponents vs time in the inserts. Ensemble averages
coupling strength. This is clearly not compatible with eitherare computed over typically 64 000 independent runs, for a
the value obtained for the Miller-Huse moddlé’ simulation time ofT =2048. Estimates of exponents must be
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variation of local exponent within that intervéFig. 5. We

09 obtain

gsequentieﬂ__ 0.836),
5sequentia1__ 0.748). (23

The estimated value of, close to that of the Miller-Huse

model, leads t@=2.12(15) (assumingB/v=1/8), with er-

ror bars large enough to include the uncertainty on the expo-

nent of both model A and Miller-Huse model. The estimated

value of § is closer to that of model A, but is too imprecise

to be exploited.

——= slope 0.839 We are thus unable to give an estimatezathat would

slope 0.817 decide between the values for the model A, the Miller-Huse

model, or an eventual third number. It is clear, though, that
I 10 00 000 our estimate of exponemt [6'=0.06(2)] is not compatible

(a) t with the values of either model A#’=0.193(5) or the

Miller-Huse model 6’ =0.146(9).

The above results confirm, at the dynamic level, those
obtained in[8] for the static critical properties of Ising-like
phase transitions in systems made of coupled chaotic maps:
the mode of update is relevant. [I8], the static exponents of
the sequential-update model studied above were measured to
be, within numerical accuracy, those of the Ising model. The
above results show that these two models have different dy-
namic exponentsat leastd’). Is this due to their mode of
update and/or to other factors? In the next subsection, we
introduce Sakaguchi's model, a system of coupled chaotic
maps designed to have exactly the static exponents of the
Ising model, in order to further assess the relevance of the
mode of update and that of the nature of the model for the
dynamic scaling properties of Ising-like transitions.

Cloc(t)
S

100 ¢

0.7

M7 (1)

107 r

A(t)

aloc(t)

\

] 10 100 1000 B. Checkerboard update

(b) t A few years ago, Sakaguchi introduced a system of
coupled Bernoulli maps with an exponential coupling

FIG. 5. Measure of the dynamic critical exponain the case cheme and checkerboard update, which leads exactly to the

of sequential update. The second moment of the magnetization . ilibri Gibb S
M®@(t) [graph(a)] and the temporal autocorrelation functigit) sing equilibrium Gibbs measuf@].

[graph(b)] are plotted in log-log scale vs tinteas measured at the TWO COﬂtIﬂUOU.S Var'ablesgi,j and _Ai,i in [—1,1], are
critical pointg=0.112 55, for zero initial magnetization,=0, up  defined on each site of a two-dimensional square lattice with

to time T=2048. The system sizes considered ate Periodic boundary conditions. Their evolution rule reads
=16,32,64,128. All curves superpose fdf?(t), and the last three

for A(t). The microscopic timd,,. can be roughly evaluated to t+1_ t t t
tmic=0(1000), especially from the insets, where we plot in a log- Xij = 1+AL. (Xi,i +D)-1, - 1<Xi,i<Ai,J ’

linear scale the local exponenfg (t) and §,,(t) vs timet, com- b

puted forL =64, over time intervals of duratiot),.=100. Graph 5

(a): the ¢ v_alues correspondTg to model /§{=Q.817, sghd_ lines Xitjl: t (X’i[,j_ 1)+1, Ait j<Xit j<1, (24)
and the Miller-Huse model{(=0.839, dashed ling¢sare indicated. 1-A; i

Graph (b): the bottom and top curves respectively correspond to
sizesL=16 andL=32,64,128(superposed The & values corre-  where the(time-dependelleIopesAi"j of the Bernoulli maps
sponding to model A §=0.74, solid lines and the Miller-Huse  gre calculated according to
model ((=0.81, dashed lingsare indicated. Note that fluctuations

of {ioc(t) and §o(t) observed fot=t,,. encompass the values for Aityj = tanf{J(crit:L- + critliy

Aottt 1+ Uf,}il)}’ (25
both models.

i =
with J a coupling constant. Discrete spin variables can be

derived from intervals much smaller than one decéygpi- defined by

cally 1006=t=2048). Linear fitting in a log-log scale is thus ot = sgr{xi”jl—xit De{-11, (26)
impractical. For that reason, we assume that the plateau ob- ' ' ’

served fort>1t,. in plots of the local exponents correspond which allows one to retain definitio(L6) for the fluctuating
to the asymptotic value, and evaluate error bars from thenagnetization.
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When sites are updated successively on two checkerboard
lattices defined by the parity oftj, it is possible to show
that the invariant measure of this system is the same as that
of the Ising mode(9]:

Peﬂ({a-i’jImi,j})~eXpJ{ |§J: mi’j(mi,11j+mi+l’j+mi’j,l

s
+mi,j+1)}- (27)
Therefore, static exponents are known exa¢®nsager so- 107 1
lution). This was checked numerically {i8], following the et
same procedure as that used for the Miller-Huse model. Sak- . slope 0.193

aguchi’'s model does indeed belong to the Ising universality
class for static critical exponents. T T
However, nothing is knowm priori on dynamical prop- @ ! 10 100
erties, which we will investigate now along the same lines as !
before. One advantage of Sakaguchi’'s model is that the criti- 107
cal pointJ; is known exactly. One source of error is thus
eliminated. One drawback is the following: the magnetiza-
tion M depends on site values o consecutive time steps.
The method used previously in order to prepare initial con-
ditions with fixed small initial magnetization cannot work.
Instead, we applied the following procedure: start from ran-
dom initial conditions and evolve the system at high tem- __
perature(at low J;;;, the system is in the disordered phase §—
with zero mean magnetizatipmintil it reaches by itself the
desired initial magnetizationm,. The system is then
guenched to the critical coupling. Since the magnetization is
calculated from discrete spins, there is no dispersion on the
value of initial conditions ny=2K/L?, as beforg Yet, this
procedure is more costly numerically, which explains why,
in the following, the obtained statistical accuracy is some-

slope 0.193

what lower than for the previous two models studied here. In ] 10 100
practice, we usel;,;=0.1, before quenching td.=In(1 (b) ¢
+\2)/2.

The protocol used is the same as before. As expected, this FIG. 6. Measure of the dynamic critical exponeit for Sak-
model also exhibits a well-defined initial critical slip regime. @9uchi's model. The magnetizativ (t), measured at the critical
In fact, the microscopic timé,,;. turns out to be equal to 0 pointJ=J, (cf. tgxt)_, is plotted vs time in a log-log scaIF. In both
(Fig. 6). A possible explanation for this is that the macro- 9"aPhs, the solid line corresponds to a slope equai’te 0.193
scopically correlated domains present Bf; survive the _(n_1tc_>o:e| A. G:_apl;(a). trfz‘?'/sl_tfm S!Ze“zstz 'S f'xef}vgg'lfofge
guench toJ.. Impeccable scaling is observed for the initial ':r']éag galgorl% Iisrl\c/)glrgg;oﬂ(=4 éag'iz(frsn:"gggg%fto‘top The
growth of the magnetizatioM. Reliable measurements are . y . .

ibl v forl = d 64: h i microscopic time ,,c is equal to zero. Scaling is thus observed over
possible only forL =32 and 64: crossover to the nonlinear more than two decades. Grapb): the initial conditionK=4 is

relaxation regime occurs too sooty{-60) for L=16, and  fixeq, for system sizes =16,32,64 (from top to bottorh. The
L=128 is too costly to reach satisfactory statistical qualitycrossover time for the smallest site=16 is observablet,~60.
due to the preparation of initial conditions. Ensemble averfinjte-size effects are negligible far=32,64.

age is done over 128 000 realizations simulated dufiing

=128 time steps. From linear fits over the full interval 0 | —gg4, t,. ~70 for L=128), estimated as before from the
=t=<128, we obtaing’=0.197(7) forL=32 and 0.19(1) gyojytion of local exponents. As for nonzero initial magne-
for L=64 (Fig. 6). Within error bars, no finite-size effects ,ations, ensemble average is performed over 128 000 real-
are present. Our estimate is izations, and the simulation time =128, for system sizes

up to L=128. Exponents are thus estimated over less than
one decade. However, finite-size effects are negligible for
L=32. We obtain

G,Sakaguchlz 0. 194 14) ' (28)

in good agreement with results obtained for mod¢IL8,19,
and not consistent with the value obtained for the Miller- { sakagueri= 0-822) (29)
Huse model.

Again, measuring is more difficult. The scaling o (® (note the large error barsFrom the exact valu@/v=1/8,
starts late, with a fairly large microscopic timg,(;~40 for  this leads toz=2.135), roughly compatible with both
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vals of durationt,,.=100, include values of expected for
both model A and the Miller-Huse model.

The situation concerning the scaling behavior of the time
autocorrelation function is somewhat more satisfactory, de-
spite (or thanks tg finite-size effects: large size behavior
] converges toward a value &f that is necessarily smaller
than the Miller-Huse exponer=0.81(1). In fact, data ob-
tained for the largest size considerdd=(128, T=128) are
characterized by a scaling exponéstd/z— 6’ ~0.75, com-
patible with the model A values=0.74(1) [cf. Fig. 7(b)].
Y This finding is confirmed qualitatively by runs performed for
o L=128 longer simulation timesl(= 128, T=2048): the Miller-Huse

slope = 0.817 value is not allowed by the evolution of effective behavior
——— slope = 0.839 (exponenk with system size. Since we cannot cross check
with larger system size due to numerical limitations, we do

: : : not provide error bars on our estimate:
1 10 100

Clor

100 -

M)

°oL=16
=L =32

5Sakaguch’iv 0.75. (30)

Our numerical results show clearly that the critical dy-
namics of Sakaguchi’s model belongs neither to the univer-
sality class of Miller-Huse model, nor to that of the sequen-
tially updated model studied in Sec. IV A. It is moreover
likely that Sakaguchi's model belongs to the universality
class of model A, for both statics and dynamics: the check-
erboard update of Sakaguchi's model may thus be analogous
to that of, say, Glauber dynamics of a spin system.

Our results may be summarized as follogge Table |
for numerical values of all exponents estimated sg: fap-
date is a relevant parameter for dynamic critical exponents of
Ising-like transitions of coupled chaotic map systems. Not
only models with static exponents outside the Ising univer-

sality class(Miller-Huse) have also their dynamic exponents
1 10 100 different from those of model A, but models within the Ising
(b) t static class(sequentially updated Miller-Huse, Sakagychi
may also have non-Ising dynamic exponefgsquentially
updated Miller-Husg In some sense, this is not too surpris-
ing since update is already known to be a relevant parameter
(b)] are plotted in a log-log scale vs tinte as measured at the for _the dynamical exponents_ of spin systems in the Ising
(exac) critical pointJ=J., for zero initial magnetizatiomy=0, ?tat'c .class. In the next S?Ct'on'_we go a step further and
up to time T=128. The system sizes considered ake investigate whether the universality found at the static level

=16,32,64,128, for 128 000 realizations. Graph finite-size ef- N (8] among synchronously updated CMLs subsists at the
fects become negligible fdr=32. The solid and dashed lines re- dynamic level.

spectively correspond to slopes equal{te 0.817 (model A and
£=0.839(Miller-Huse model. In the inset, we plot the local expo-
nent {,(t) computed over intervalg,,.=100, for L=128, T
=1024, data averaged over 32 000 realizations. Fluctuations of
{10c(t) encompass both values expected for model A and the Miller-
Huse model. Graplib): the slope of the solid line is equal te §
=—0.74(model A). The inset shows, for =128, a log-linear plot

A(t)

o L=16
s L=32 ‘o,
o L=64

-2 | o [ =128
slope = -0.74

10

FIG. 7. Measure of the dynamic critical exponerfor Sakagu-
chi's model. The second moment of the magnetizathdf(t)
[graph (a)] and the temporal autocorrelation functiét) [graph

V. NONUNIVERSALITY WITHIN SYNCHRONOUSLY
UPDATED MODELS

In this section, we study two variants of the Miller-Huse
model: we consider first the case of a locally anisotropic
f the ratio A(D)/t-2 vs timet for th ol values=0.74 coupling to three neighbors, and then the case where the
of the ratioA(t)/t % vs timet for the numerical values=0. piecewise linear local mafi3) is replaced by a smooth map.
(model A, bottom curve and §=0.81 (Miller-Huse model, top . .

! : » ., The static exponentg, v, andv of these variants were mea-
curve. This suggests that the continuous transition of Sakaguchi's d to be th ithi b th f th
model belongs to the universality class of model A for the Su_re 0 be the Same’ wi m_e_‘rror_ ars, as those o e
exponents. Miller-Huse model. Given the difficulties encountered above

when trying to estimate the exponentin this section we
model A and the Miller-Huse model. A longer simulation restrict ourselves to measurements of the expomentvia
time (T=1024), even for the largest system si2ze<128) the early-time scaling of(t).
leads to qualitatively identical results, without any quantita- The three-neighbor variant of the Miller-Huse model was
tive improvement: the inset of Fig.(@ shows that fluctua- studied in[8] because of its particularly weak corrections to
tions of the local exponend,,., computed over time inter- scaling. Its anisotropic evolution rule reads



57 EARLY-TIME CRITICAL DYNAMICS OF LATTICES OF ... 1601

X 1= (1=309) f(Xy ;) +g(F (X5 _ 1))+ F(X5 1 1)) '

+F(Xz1,5+1)),

Xy 1= (1=30)F (X1 1)) +(F (X )+ (X5 1 2)) .

+ (X4 1j-1))s (31)

M(t)

wheref is the original piecewise linear mdp3). Each site is
thus coupled to three of its nearest neighors: sites belonging
to even(odd) columns of the lattice are coupled vertically to
their northern(southern neighbor only. Rulg31) is applied 10
synchronously to all sites, with periodic boundary condi- a s
tions. The local anisotropy introduced vanishes at large — slope = 0.165
scales. In this case, an Ising-like transition takes place for a L ‘ o
critical couplingg.=0.251184), estimated using Binder’s 1 10 100
method[8]. (a) t

The smooth map variant only differs from the Miller-
Huse model by the choice of the local functidn which
remains a chaotic, odd map of the 1,1] interval for sym-
metry reasons, but now reads

aB 5 abBaLLE

f(x)=3x—4x3. (32 107

On general grounds, this smooth function, with its expanding
and contracting parts, may be considered more “generic”
than the original piecewise linear map. An Ising-like transi-
tion also takes place in this case, for a slightly smaller critical
coupling than the Miller-Huse modefj.=0.17864(4)(8].

For both variants, hereafter referred to as “MH&hree-
neighbor coupling and “C4” (smooth cubic map the ¢ — slope = 0.128
methodology used in Sec. lll to determine exponéhtfor
the original Miller-Huse model can be applied. Initial condi- 10 — e
tions with fixed, small magnetizatiomy are prepared using ®) L 10 ; 100
the same procedure, and the phenomenology observed is the
same. In both cases, the microscopic time is visually esti- FIG. 8. Measure of the dynamic critical exponetit for two
mated to bd,,.~5. After this time, a clear scaling behavior variants of the Miller-Huse model. The magnetizatidr{t), mea-
is observed foM(t) (Fig. 8). SizesL=16, 32, 64, and 128 sured at the critical coupling. (cf. texi), is plotted vs timet in a
were studied, with ensemble averaging over 512 000 realizdeg-log scale. The system size lis=64 (top three curves on each
tions for L<64 and 128 000 fot. =128. Finite-size effects graph, andL =128 (bottom two curves, shifted down for clarjty
are smaller than error bars fae=32. Statistical errors o’ The initial magnetization isno=2K/L?. The microscopic timép
are estimated by comparing values obtained for different iniiS €qual to 5. Graptta): anisotropic three-neighbor coupling with
tial magnetizatiorm0=2K/L2 with K=2,4,8 and coupling original piecewise linear local mafi3) (model MH3. The solid

strengthgy within the uncertainty interval of.. Our global "”_es Co”e_Spond tOOSLlo_peS eqfalabzo'l%' ';rf)m bottom t? top:
(conservative estimates are L=128,K=8,16 and.=64,K=2,4,8. GrapHhb): symmetric four-

neighbor coupling with smooth cubic local m&p2) (model C4.
The solid lines correspond to slopes equabte-0.128. From bot-
O(mnz)=0.1688) and 6, =0.1286). (33  tom to top:L=128,K=8,16 andL=64,K=3,4,8.

M(t)

. . VI. DISCUSSION
Not only are these value®tcompatible with each other, but

both are also at odds with the value found for the original The first conclusion about the series of numerical experi-
Miller-Huse model ' =0.146(9). ments conducted in this work is that nontrivial early-time
Numerical estimates of)’ obtained for all models we critical dynamics occurs in phase transitions of far from
considered are gathered in Table Il. Except in the presence @fquilibrium, coupled map lattices. The microscopic titpe
finite-size and finite-time effects not detectable in the experiafter which scaling sets in tends to be small ké(t), gen-
mental conditions of our work, the above results lead to conerally of the same order of magnitude as for equilibrium
clude that CMLs of the Miller-Huse type exhibit different systems. On the other hang, is typically at least one order
exponents for the dynamic critical properties of their Ising-of magnitude larger for the evolution of second-order quan-
like transitions even though they share the same static expdities such asM(?)(t) and A(t). This is also in agreement
nents and the same mode of update. with spin system$19]. One would, however, like to under-
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TABLE II. The universality observed for the static properties of Ising-like transitions of lattices of coupled chaotic maps does not hold
for their dynamic critical properties: a summary of numerical estimates of the dynamical critical exp@heismbe(s) in brackets
correspond to the uncertainty on the last d&jte.g., 0.193(5) means 0.193®.005:

2D lIsing Sakaguchi Sequential C4 Miller-Huse MH3
Static universality class Ising Ising Ising Synchronous Synchronous Synchronous
Critical point In(1++/2)/2 In(1++/2)/2 0.11255(5) 0.17864(4) 0.20534(2) 0.25118(4)
o' 0.193(5) 0.194(14) 0.06(1) 0.128(6) 0.146(9) 0.165(8)

stand whyt,;. is always larger for second-order quantitiesthe static critical properties of synchronously updated
than forM(t). Intuitively, it can be argued that in order for coupled map systems showing Ising-like transitions. Variants
the scaling regime o (?)(t) andA(t) to set in, the system of the Miller-Huse model, all shown if8] to share the same
first needs to generate macroscopically correlated regionsfatic exponents, exhibit different values@f Again, as for
i.e., M(t) must already be in its scaling regime. Thus spin systems, universality classes are narrower for dynamical
tmic(M (1), A(t))=t;.(M(t)). Further, one may argue that critical exponents than for static ones. Excluding Sakagu-
macroscopically correlated regions for second-order quantiehi’'s model, whose control parameter is too markedly differ-
ties can only establish themselves when the magnetizatiognt to allow a meaningful comparison, one may notice that
M(t) has changed “significantly,” say by a factor 2. Using numerical estimates of’ for the four other models depend
M(t)~t?, one obtaing,(M®,A(t))~2Y¢". This admit- monotonously on the critical coupling, (see Table I
tedly rough argument may explain semiquantitatively whylower values of the coupling constant correspond to a slower
microscopic times observed for the Miller-Huse models withcoarsening process. We believe this can be understood by
sequential and synchronous update differ by two orders ofonsidering the structure of the phase space of these systems,
magnitude: tpc(seq.)tm( MH) ~2(1/008-(1/0.146)_510 = or  which can be seen as a hierarchy of repellors. During coars-
1024. In addition, finite-size corrections to scaling are alseening, this hierarchy is explored, and thus its scaling
typically much larger for second-order quantities than forproperties—which probably depend ga-must be related to
M(t). A direct consequence of the observed values,@f the scaling behavior that defings. Of course, the above
and of the strength of finite-size corrections is that, in pracicture will need to be substantiated in the future, but it
tice, the exponen®’ is much easier to measure than thealready suggests a link between the structure of the phase
exponentz, our initial goal. Thus, althoughremains largely ~ space(and hence the details of the dynamiesid exponent
out of reach in some cases, the critical initial slip methodé’.
offers the advantage of accurate estimationg’of In agreement with our findings, which confer a sort of
The second conclusion of our work lies in the interpreta-“maximal” nonuniversality to ¢’, the tentative picture
tion of the various dynamic exponent values we measuredketched above, invites comments on the relative statas of
which are summarized in Tables | and II. and #'. Unfortunately, our attempts at measuringvia ¢
First, and perhaps most importantly, we confirm, at theand §) have largely failed, mainly because of large values of
level of dynamic critical properties, the results obtained int.,.. However, data obtained for the variants C4 and MH3 of
[8] at the static level: update is a relevant parameter for unithe Miller-Huse model are compatible with the idea of a
versality classes of Ising-like transitions. Synchronously up-greater universality for than foré’. In particular, they sug-
dated coupled map models—such as the Miller-Huse modejest that variant C4 might possess the samalue as the
and its variants MH3, C4—have critical exponents differentoriginal Miller-Huse model. Thus, we would like to suggest
from those of model A both at the static and dynamic levelthat ' may be considered as a quantity highly dependent on
For the original Miller-Huse model, our data are even con-the details of the dynamics in nonequilibrium situations,
clusive for both exponentg8’ andz. while z, in comparison, is a more global quantity. The inde-
Second, we extend to the transitions of coupled chaotipendence of exponentsand 8’ is consistent with this con-
maps a result already known for equilibrium spin systemsjecture.
the static universality class of the Ising model breaks down To summarize, our numerical experiments provide addi-
at the dynamic level. The sequentially updated Miller-Husetional contradictory evidence to the conjecture[8f in the
model and the Sakaguchi model, which are in the static Isingase of continuous phase transitions of coupled chaotic map
class, possess different dynamic exponéimdact our data  systems. In other words, the qualitative features of scaling
are unambiguous only fo®'). The distinction between are correctly predicted by renormalization-group methods
checkerboard and sequential update is known to be irrelevaiisince, e.g., the scaling behavior predicted [Ag] is ob-
at equilibrium for both static and dynamic critical exponents,served, but the same techniques fail to predict exponents
including the exponend’ [18,19. However, the same dis- quantitatively. The above remarks, though, call for more de-
tinction becomes relevant at the dynamic level for lattices otailed investigations of the respective role of the various dy-
coupled chaotic maps. An additional interesting point is thahamical exponents involved in order to explain the origin of
Sakaguchi’s model seems to possess the dynamic exponetit® nonuniversality reported here. In particular, the possibly
¢’ andz of model A. different status oz and ' provides an interesting starting
Third, our data gathered for the sole exponéhindicate  point on which to base further research, at both the numerical
the splitting of the “nonequilibrium universality class” for and theoretical levels. Further, one would also like to know
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