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Early-time critical dynamics of lattices of coupled chaotic maps
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The early-time critical dynamics of continuous, Ising-like phase transitions is studied numerically for two-
dimensional lattices of coupled chaotic maps. Emphasis is placed on obtaining accurate estimates of the
dynamic critical exponentsu8 andz. The critical points of five different models are investigated, varying the
mode of update, the coupling, and the local map. Our results suggest that the nature of update is a relevant
parameter for dynamic universality classes of extended dynamical systems, generalizing results obtained pre-
viously for the static properties. They also indicate that the universality observed for the static properties of
Ising-like transitions of synchronously updated systems does not hold for their dynamic critical properties.
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I. INTRODUCTION

The last decade has seen considerable experimental
merical, and analytical effort aimed at better understand
the sustained spatiotemporally chaotic regimes of large,
mogeneous systems kept far from equilibrium by an exte
driving force. In particular, detailed investigation of a num
ber of hydrodynamical flow regimes, including convectio
shear flow, and crispation experiments, has led to a wealt
interesting insights into the properties of spatiotempo
chaos@1#. Important pending questions concern the status
the asymptotic limit of long time and large system size,
well as the relationship that may exist between class
equilibrium statistical mechanics and possible statistical
scriptions of spatiotemporal chaos in this ‘‘thermodynami
limit @1,2#.

This article focuses on the critical behavior of models
spatiotemporal chaos close to second-order-like phase
sitions that occur in the thermodynamic limit. Theoretic
work @3# has suggested that phase transitions in generic n
equilibrium systems made up of locally interacting subun
belong to the universality class of model A@4#, for both
static and dynamic critical exponents, provided that the or
parameter is a nonconserved, scalar quantity. Being base
coarse-grained Langevin descriptions, the approach de
oped in @3# overlooks the exact nature of microscopic tim
evolution. Its conclusion also relies on the validity of a
sumptions generally associated with the dynamic renorm
ization group formalism.

Another significant contribution is that of Miller an
Huse. In@5#, they introduce a simple lattice dynamical sy
tem with microscopic Ising symmetry~square lattice of lo-
cally coupled, chaotic, odd maps!, whose salient feature i
the presence of a nonequilibrium continuous transition qu
tatively similar to the ferromagnetic critical point of the two
dimensional Ising model. Ising-like transitions between s
tiotemporally chaotic phases turn out to be a fairly comm
feature of coupled maps lattices~CMLs!: they are observed
for a variety of local maps, lattice geometries, and upd
rules @6–9#. However, contrary to the conjecture of@3# and
571063-651X/98/57~2!/1591~13!/$15.00
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to early conclusions based on simulations of much sma
systems@5#, careful analysis of finite-size data obtained fro
extensive numerical simulations of the Miller-Huse mod
shows that the corresponding phase transition does not
long to the Ising universality class@7,8#. The measured
correlation-length exponentn50.8960.02 is significantly
lower thann Ising51, while exponent ratiosb/n andg/n re-
main in good agreement with Ising values. Comparison w
related models, in particular with transitions of sequentia
updated lattice dynamical systems, further indicates that s
chronous update is the relevant parameter responsible
departure from Ising universality: keeping all other featu
of the Miller-Huse model unchanged, Ising static expone
are recovered as soon as sites are updated sequentially@8#.

Our main objective is to extend previous work on sta
critical exponents to the dynamic critical properties of t
Miller-Huse model. The dynamic critical exponentz, which
quantifies the algebraic divergence of coherence times
criticality, is known to be sensitive to parameters otherw
irrelevant for static exponents, such as the existence or
sence of macroscopic quantities conserved under time
lution @4#. In addition, the nature of update is a releva
parameter for dynamical universality classes of Ising s
tems: synchronous update of clusters of spins yields disti
significantly lower values of the dynamic exponentz than is
observed for standard sequential or checkerboard up
@10#. Ignoring both the conjecture of@3# and the numerical
results of@8#, one may thus naively expect phase transitio
of synchronously and sequentially updated CMLs to be ch
acterized by different dynamical exponents. Here, we wan
confirm, for the dynamic properties of Ising-like transition
of lattices of coupled chaotic maps, the relevance of
mode of update already discovered in@8# for their static
properties. Similarly, the static universality class observ
for synchronously updated models is revisited from the po
of view of their dynamical properties.

Compared to Ising systems, the measurement of st
critical exponents turns out to be significantly more resou
consuming in the case of CMLs, due in particular to t
presence of unusually large corrections to scaling@8#. More-
1591 © 1998 The American Physical Society
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1592 57PHILIPPE MARCQ AND HUGUES CHATE´
over, extracting reliable values of dynamic critical expone
from direct simulations is a notably difficult task, even ina
priori simpler cases. Despite much numerical effort,
value of the dynamical exponentz of model A in dimension
d52 remains somewhat controversial~see@11# for a survey
of work done prior to 1993, and@12# for a more recent re-
view!. The methodology we apply here to phase transitio
of CMLs is based on recent theoretical work by Jans
et al., which proves the existence of a new universal regi
in the early critical dynamics of systems starting from no
equilibrium ~e.g., completely disordered! initial conditions
@13,14#. This regime, termed ‘‘initial critical slip’’ or ‘‘uni-
versal short-time behavior’’ in the literature, is characteriz
by a new nontrivial exponentu8, unrelated to the usual stati
and dynamical exponents. The dynamical exponentsu8 andz
can be readily obtained from the initial scaling properties
observables of finite-size systems, as shown analyticall
@15#, and first implemented numerically in@16#. Unlike stan-
dard methods, this procedure is nearly free from the diffic
ties associated with critical slowing down at the transiti
point: useful simulation times (T;1022103) are typically
much shorter than the finite-size coherence time scaletL

;Lz. Statistical accuracy is ensured by ensemble avera
over a large number of independent realizations. Thank
high numerical efficiency, good agreement on the value
critical quantities such asu8 and d/z2u8 has been already
reached for model A@17–19#. This makes comparison with
other systems easier, and opens the way to an investiga
of the relative universality ofz andu8, which, based on the
theoretical work of Janssenet al. @13,14#, are expected to
depend on the same relevant parameters.

This article is organized as follows: current understand
of early time critical dynamics is briefly reviewed in Sec.
The methodology we follow closely parallels that used
Okanoet al. for the two-dimensional Ising model with hea
bath and Metropolis algorithm@19#. The same procedure i
used throughout, thus allowing meaningful comparison
tween exponents obtained for different CMLs, as well
with exponents of model A. First, the dynamic critical pro
erties of the Miller-Huse model, a lattice dynamical syste
with synchronous update, are investigated in Sec. III. T
model and its phenomenology are introduced in Sec. III
Simulations pertaining to the measure of the critical ex
nentsu8 and z are next described in Sec. III B and III C
respectively. In Sec. IV, we investigate the role played by
type of update for the dynamic critical properties of Isin
like transitions, in order to extend its relevance, already
tablished in@8# at the static level. In Sec. IV A, we firs
consider a sequentially updated model introduced in@8#,
which, according to previous numerical results, belongs
the Ising universality class for static critical exponents.
Sec. IV B, we turn to Sakaguchi’s model@9#, a CML with
checkerboard update whose static critical exponents
known exactly to be equal to those of the Ising model. Ne
we consider, in Sec.V, various synchronously updated m
els to investigate whether the universality of the static criti
properties of their Ising-like transitions extend to their d
namic exponents. Our results are summed up and discu
in Sec. VI.
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II. EARLY-TIME CRITICAL DYNAMICS
AT SECOND-ORDER TRANSITIONS

In order to measure the dynamic critical exponentz from
numerical simulations of finite-size systems, most meth
considered until a few years ago made use of the so-ca
nonlinear relaxation regime, by, e.g., looking at the decay
the system’s time-dependent magnetizationM (t) according
to

M ~ t !;t2b/~nz!, ~1!

or similar relations involving higher-order moments. This r
gime was generally believed to be relevant within the tim
interval 1!t!tL , whereas finite-size linear relaxation eve
tually prevails beyondtL5Lz, where the magnetization de
cays exponentially:M (t);exp(2t/tL).

A point overlooked until the work of Janssenet al. @13# is
the importance of initial conditions. Suppose that we st
from disordered nonequilibrium initial conditions~magneti-
zation is zero or very close to zero! with very short initial
correlation length, and quench the system to its critical po
One qualitatively expects fluctuations to be negligible
first: the system is then mean-field-like. Since the mean-fi
critical temperature is usually larger than the actual criti
temperature, the system is in its ordered phase, and the m
netization~and correlation length! will want to grow. This
accounts for initial magnetization growth. There is of cour
a crossover point, after which the system’s behavior rev
to the usual~relaxational! behavior of Eq.~1!.

This qualitative idea has been formalized, and the infl
ence of initial conditions on renormalization-group transfo
mations investigated in detail for bulk systems@13,14#. Let
m0 be the initial magnetization at timet50. This field gives
way to a new scaling indexx0 independent of already know
ones ~both static and dynamical!, and to a time scalet0
within which a new universal scaling regime sets in. T
new exponentu8 is universal in the same sense as the us
dynamic critical exponentz, since it was obtained within the
same formalism. Fortmic<t<t0, andm0 small enough, the
magnetization grows as a power law:

M ~ t !;m0tu8, ~2!

where u85(x02b/n)/z. The microscopic timetmic is the
time after which macroscopically correlated regions for
i.e., regions large compared to the microscopic length sc
in this case the lattice constant. The time evolution of o
servables fort<tmic is nonuniversal, and depends on micr
scopic features of the model. The crossover timet0 is ob-
tained by matching Eqs.~1! and ~2!:

t0;m0
2x0 /z, ~3!

and diverges in the limit of zero initial magnetizationm0. In
that case, the nonlinear relaxation regime is not observe
the bulk.

Then, finite-size scaling theory was introduced by@15#.
We will need it for interpretation of numerical experiment
The scale-invariant expression reads, for a system of fi
size L, and thekth moment of the order parameter, at th
critical point:
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TABLE I. Update is a relevant parameter for dynamic critical exponents: a summary of num
estimates of the dynamical exponentsu8, z, z ~obtained fromz) andd, for three models with synchronou
~Miller-Huse model, Sec. III!, sequential~Sec. IV A!, and checkerboard~Sakaguchi’s model, Sec. IV B!
update. The exponent values given for model A are discussed in Sec. II. Numbers in brackets corres
the uncertainty on the last digit~s!, e.g., 0.193(5) means 0.19360.005.

Model A Miller-Huse Sequential Sakaguchi

Critical point ln(11A2)/2 0.20534(2) 0.11255(5) ln(11A2)/2
u8 0.193(5) 0.146(9) 0.06(1) 0.194(14)

z5(d22b/n)/z 0.808(6) 0.839(3) 0.83(6) 0.82(2)
z 2.165(15) 2.07(2) 2.12(15) 2.13(5)

d5d/z2u8 0.74(1) No estimate 0.78(8) ;0.75
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M ~k!~ t,L,m0!5b2kb/nM̂ ~k!~b2zt,b21L,bx0m0!, ~4!

whereb is a scaling factor andM̂ (k) is a universal function,
independent of microscopic details of the system. An imp
tant point is that the exponentz in Eq. ~4! is the same as the
usual one@4#. Choosing the arbitrary prefactor equal tob
;t1/z, one obtains

M ~k!~ t,L,m0!5t2kb/nzM̂ ~k!~ t/tL ,t/t0!, ~5!

where t05m0
2x0 /z and tL5Lz. For a finite-size system an

evolution timest,t0 ,tL , one obtains

M ~ t !;m0tu8 ~6!

for small values ofm0 @13#. This allows one to measureu8
directly. Then, assuming that the value ofb/n is already
known,z can be obtained thanks to the relation@15#

M ~2!~ t !;tz with z[~d22b/n!/z, ~7!

as used for model A in@19#. Finally, careful renormalization
group analysis leads to the following scaling form for t
order-parameter time correlation functio
A(t)5^m(t)m(0)& ~cf. explicit derivation in@14#!:

A~ t !;t2d with d[d/z2u8, ~8!

where the space dimension is denotedd.
Note that finite-size scaling relations may also be used

order to measurez andb/n @20#:

U~ t,L !5U~bzt,bL!,

M ~2!~ t,L !5b2b/nM ~2!~bzt,bL!. ~9!

We choose not to, since finite-size effects seem to be ei
negligible, or easily controlled in cases relevant here~see
below!.

To conclude this section, we briefly review recent wo
on the critical dynamics of model A. The relevant expone
values are gathered in Table I. The exponentu8 has been
measured twice according to Eq.~6!, first by Grassberge
@18# @u850.191(3), heat-bath dynamics#, then by Okano
et al. @19# @u850.194(4), heat-bath and Metropolis algo
r-

in

er

t

rithms#, thanks to slightly different methods. We use a co
servative combination of the two estimates as our refere
value:

umodel A8 50.193~5!. ~10!

Excellent agreement has also been reached for the comb
tion d5d/z2u8, obtained from Eq.~8!, between the early
measures of Huse and of Humayun and Bray@17# @d
50.74(1), heat-bath algorithm# and a recent confirmation b
Okanoet al. @19# @d50.739(5)#. Our conservative estimat
is thus

dmodel A50.74~1!. ~11!

The case of the dynamic critical exponentz is more delicate.
Estimates using methods derived from the theory of ea
time critical dynamics vary between 2.155(3)~heat bath!
@19#, 2.137(11)~Metropolis! @19#, and 2.143(5)~heat bath!
@20#. These estimates are somewhat lower than the curre
accepted valuez52.165(15)@12#, obtained from both series
expansions@z52.165(15), data from@21# reanalyzed by
Adler, see@12## and from a number of direct simulations o
very large systems: 2.165(10)~nonlinear relaxation@11#!,
2.172(6) ~damage spreading@18#!, 2.160(5) ~nonlinear re-
laxation @22#!. Since the latter generally correspond to s
nificantly better statistics and larger system sizes, we cho

zmodel A52.165~15! ~12!

as our reference value. It leads to the combinationz5(d
22b/n)/z50.808(6), for b/n51/8, in reasonable agree
ment, within error bars, with the value obtained from Eq.~7!
in @19#: z50.817(7).

III. DYNAMIC CRITICAL EXPONENTS
OF THE MILLER-HUSE MODEL

A. The model

Recently, Miller and Huse introduced a CML designed
be a simple nonequilibrium Ising-like model@5#. Its local
map, which provides the ‘‘reaction’’ part of this reaction
diffusion lattice dynamical system, is an odd, piecewis
linear, chaotic map of the real interval@21,1#:
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f ~x!55
23x22 if 21<x<2

1

3
,

3x if 2
1

3
<x<

1

3
,

23x12 if
1

3
<x<1.

~13!

The constant absolute value of the slope being equal to th
its Lyapunov exponent is positive and equal to ln3. For
simple case of a two-dimensional square lattice, the ev
tion rule reads

xi , j
t115~124g! f ~xi , j

t !1g„f ~xi 21,j
t !1 f ~xi , j 21

t !1 f ~xi 11,j
t !

1 f ~xi , j 11
t !…, ~14!

where t denotes the~discrete! time, and the subscripts th
position on the lattice. The nearest-neighbor coupling c
stant g can vary between 0 and 1/4. In the following, a
numerical calculations are performed on square arrays of
ear sizeL with periodic boundary conditions.

Sincef (x) is an odd function ofx, discrete spin variables
can be defined in a natural fashion:

s i , j
t 5sgn~xi , j

t !P$21,1%. ~15!

Next, the fluctuating, space-averaged magnetization is
fined as

mL
t 5

1

L2(
i , j

s i , j
t . ~16!

In fact, one can also use a definition of the ‘‘magnetizatio
based on the original continuous variablesxi , j

t . This does not
alter significantly the statistical results, as we mention in
following.

Increasing the coupling constantg, the only control pa-
rameter in this system, an Ising-like phase transition ta
place from a disordered phase with zero average magne
tion at weak coupling to an ordered phase at strong coupl
where the spins tend to be aligned with each other. The o
parameter is the magnetizationML5^umL

t u&, where the
brackets represent in practice~long! time averages~ergodic-
ity is assumed!.

Note that chaos is extensive in this system@6#, and that
dynamical quantifiers, such as the Kolmogorov-Sinai
tropy, seem to be insensitive to the onset of long-range o
at least for the finite-size systems for which these calcu
tions can be made. Only one length scale, the correla
length j, diverges in the thermodynamic limit. This prove
that the transition exists in the thermodynamic limit, as c
roborated by the applicability of finite-size scaling arg
ments. Such an analysis allows one to measure the stan
static critical exponents, and, in particular, the deviation
the correlation-length exponentn50.89(2), from the Ising
valuen51. @8#

B. Measure of u8

Here we want to look at the short-time dynamics of ca
fully prepared initial configurations with a given initial mag
e,
e
u-

-

n-

e-

’

e

s
a-
g,
er

-
er
-
n

-

ard
f

-

netizationm0. They are generated easily by the followin
procedure. Form050, assign real random numbers (xi , j )
uniformly distributed on@0,1# to L2/2 randomly chosen site
of the lattice. Assign then the opposite values (2xi , j ) ran-
domly to the remainingL2/2 sites: the total magnetization i
then exactly zero. In order to obtain a small but nonze
initial magnetization, implement the same procedure,
based on (L22K)/2 randomly chosen sites. Then set t
value of theK other sites to, e.g.,x51. The magnetization is
thus equal tom052K/L2. We have checked that this particu
lar choice does not influence the scaling properties descr
in the following. Choosingx51 possesses the advantage th
the initial magnetization has the same value whether con
ering discrete spinss i , j

t or the original continuous variable
xi , j

t .
The value of the critical coupling strengthgc was previ-

ously obtained according to Binder’s method. We u
gc50.205 34(2)@8#. As predicted in@13#, a regime of initial
growth of the magnetization is observed, as well as the cro
over toward nonlinear relaxation for large enough init
magnetizationm0. The corresponding coarsening process
illustrated in Fig. 1. For measurement purposes, we usK
52,4,6,8,10, for sizes ranging betweenL516 andL5128.
The duration of a run isT5128. In such conditions, no
crossover to the nonlinear relaxation regime is observ
sincet0@T. Thanks to the good quality of our data, the val
of the microscopic timetmic55 can be obtained by simpl
visual inspection~Fig. 2!. This relatively small value is com
parable to what has been observed for the two-dimensio
Ising model@19#. Scaling of the magnetization versus time
observed over the time interval 5<t<128. This corresponds
to the initial critical slip regime.

The exponentu8 is measured thanks to a linear fit i
log-log scale over the intervaltmic<t<T. We checked that
using larger values oftmic and/orT does not alter the esti
mate. Note also that using values of the critical coupli
outside the confidence intervalgc50.20534(2) does not lead
to an improved quality of fits: this confirms the validity o
estimates of the critical coupling obtained in@8#.

Ensemble averages are performed over 512 000 rea
tions for L<64, 128 000 realizations forL5128. Statistical
errors are estimated by comparing the exponent values
tained for five different initial magnetizationsm052K/L2,
K52,4,6,8,10. Error bars take into account the uncertai
on gc . Note that the corresponding values ofm0 are much
smaller than those used by Okanoet al., who needed to ex-
trapolate exponent values obtained for small but finite ini
magnetization to the limitm050. Our procedure is similar to
that used by Grassberger@18#, since no extrapolation is
needed. The exponent values thus measured forL
532,64,128 are respectivelyu850.148(2), 0.142(4) and
0.148(7). Statistically equivalent values are obtained wh
considering the magnetization based on the continuous v
ables. Within error bars, no finite-size effect is observed
L>32. Our global~conservative! estimate is

uMH8 50.146~9!. ~17!

Note that this result isnot consistent with the accepted valu
for the critical dynamics of model A:u850.193(6) obtained
by similar methods and with a similar statistical quality
@18,19#.
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C. Measure ofz

A first way to measure exponentz is given by Eq.~7!.
The experimental conditions are similar to those mentio
in the last section, but for an initial magnetization equal
zero (m050, K50). Simulations were performed forL
516,32,64,128,T5128, ensemble averages performed o
512 000 realizations forL<64 and 128 000 realizations fo
L5128. Log-log plots of the second momentM (2) vs time
show very good scaling, and lead to estimates of the com
nation of exponentsz5(d22b/n)/z57/(4z), assuming that
b/n51/8 for d52, as implied by@8#. In order to avoid in-
terferences with the current experimental uncertainty
b/n—estimated to beb/n50.131(6) in@8#—we will work
with z, and convert intoz as late as possible. Longer runs~up
to T51024) were performed for large system sizesL

FIG. 1. Snapshots of the coarsening process: positive~negative!
spins are represented by a black~white! pixel on a two-dimensiona
grid. This simulation of the Miller-Huse model is performed at t
critical point gc50.205 34, for an initial magnetizationm052.4
31024 (m052K/L2,K52,L5128). Snapshots~a!, ~b!, and ~c!
correspond to evolution timest50 ~completely disordered initia
condition!, t5tmic55 ~buildup of macroscopic correlations!, and t
5T5128 ~‘‘initial critical slip’’ regime !.
d

r

i-

n

5128), with less statistical accuracy. This allowed us
check that the exponents measured do indeed correspo
the asymptotic regime~cf. Fig. 3!.

Here, determining the microscopic timetmic requires ad-
ditional effort, when compared to the previous case. We
a method introduced by Okanoet al. @19#. Local exponents
z(t) are first measured from ‘‘local’’ fits limited to an inter
val of time @ t,t1t loc#. The microscopic timetmic is defined
as the time beyond whichz(t) becomes stationary, within
statistical fluctuations. We findtmic;30, for t loc515 and all

FIG. 2. Measure of the dynamic critical exponentu8 for the
Miller-Huse model. We plot in a log-log scale the magnetizati
M (t) vs time t measured at the critical pointg5gc50.205 34.
Clear scaling is observed in all cases fort>tmic55. The solid lines
in both graphs correspond to a slope equal tou850.146. Graph~a!:
the system sizeL5128 is fixed, the initial magnetizationm0

52K/L2 varies betweenm052.431024 and 1.231023, for five
distinct values ofK52,4,6,8,10~from bottom to top!. Good agree-
ment between slopes corresponding to different values ofK sug-
gests that the limitm0→0 is satisfactorily approximated. Graph~b!:
the initial condition K56 is fixed, for system sizesL
516,32,64,128~from top to bottom!. Finite-size effects are negli
gible. This suggests that the infinite-size limit is satisfactorily a
proximated.
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FIG. 3. Measure of the dynamic critical exponentz for the
Miller-Huse model. Graph~a!: we plot in log-log scale the secon
momentM (2)(t) vs timet at the critical pointg5gc50.205 34, for
an initial magnetizationm050. System sizes areL516,32,64,128
~from top to bottom!. Scaling is observed fort>tmic;30. The solid
line corresponds to a slope equal toz5(d22b/n)/z50.839. The
curves corresponding toL564 andL5128 (T5128) are indistin-
guishable. This suggests that finite-size effects become smal
L>64. Data obtained forL5128,T51024, 32 000 realizations~tri-
angular symbols! show no evidence of crossover to a distinct tim
asymptotic regime. Inset: we plot the ratioM (2)(t)/tz vs time t in
log-linear scale for the valuesz50.817 ~model A, top curve! and
z50.839 ~best fit for extrapolated value in the infinite-size lim
@see~b!#, bottom curve!. The system size isL5128, T5128. This
graph shows that our~finite-size! data arenot compatible with ex-
ponent values expected for model A. Graph~b!: we plot the finite-
size exponentz(L) vs system sizeL, as obtained from linear fits o
the data presented in graph~a! for 30<t<128. The infinite-size
estimatez5z(`)50.839~dashed line! is derived from the relation
z(L)50.83913.9L21.4 ~solid line!. The inset shows a log-log plo
of z(L)2z(`) vs system sizeL for the two valuesz50.817
~model A! andz50.839~measured!. The latter value optimizes the
quality of a linear fit of ln@z(L)2z# vs ln(L). This plot indicates that
our data arenot compatible with exponent values expected f
model A when extrapolated to the infinite-size limit.
sizesL considered. This value does not depend on the va
of t loc for t loc large enough. The microscopic time measur
here is much larger than the one estimated for the scalin
M (t) at smallm0, as had already been observed for the Is
model @19#.

Asymptotic values ofz are then obtained, as before, fro
a global linear fit performed in a log-log scale over the
terval tmic<t<T5128. As before, we checked that valu
obtained do not change, within error bars, for 15<tmic<50.
Again, these values were independent of whether the disc
spins or the continuous variables were used to calculate
magnetization.

In this case, finite-size effects are sizable and can be w
controlled: we obtain values ofz(L) for sizes 16<L<128,
which are monotonously decreasing and seem to conve
Statistical errors are evaluated from a comparison of ex
nent values measured for three coupling strength value
the confidence interval@0.20532,0.20536#. As before, the
quality of fits does not increase when varyinggc outside this
interval. In order to evaluate the rate of convergence, we
the ansatz

z~L !2z~`!;L2v, ~18!

wherez(`) is the desired infinite-size exponent. Althoug
algebraic relaxation toward an asymptotic value seems n
ral in the context of critical phenomena, we are not aware
any theoretical justification for Eq.~18!. The validity of this
phenomenological ansatz is confirmed by our data~Fig. 3!,
which is not compatible with, e.g., exponential relaxatio
Optimizing linear fits in a log-log scale ofz(L)2z(`) ver-
susL yields the following estimate:z(`)50.839(3) ~and,
incidentally,v51.4). The Ising value 0.817 is not compa
ible with our data plus ansatz~18! ~see insets of Fig. 3!. Note
that we use here the numerical results of@19# as a reference
value for model A. The discrepancy between our data for
Miller-Huse model and the currently accepted value@12# for
model A @z50.808(6), seediscussion in Sec. II# is even
larger.

Using the theoretical, exact Ising value forb/n @8#, our
estimate yieldsz52.082(4), at variance with the model A
exponent, irrespective of the method used to estimate
whether it is initial critical slip@19,20# or standard methods
@12#. Using the measured valueb/n50.131(6) @8#, one ob-
tains

zMH52.07~2!, ~19!

a conservative estimate that we endorse.
Confirmation of the previously measured values may

principle be obtained from the scaling behavior of the cor
lation function@Eq. ~8!#, with an exponentd5d/z2u8. Pre-
viously measured values lead tod/z2u850.81(1). Even
though the runs used are the same as for the second mo
M (2), in practice, scaling is not satisfactory. In particula
local exponentsd loc(t) do not converge to stationary value
Very strong finite-size corrections to the dominant scal
are present, which preclude any effective measurement od.
However, the observed behavior is compatible with larg
size, long-time convergence to the above valued5d/z2u8
50.81(1). Direct, reliable estimates ford remain beyond our
numerical resources.

or
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In conclusion, the above study of the Miller-Huse mod
first shows that the regime of initial critical slip exists al
for ~some! deterministic systems, with the same pheno
enology as for spin systems. Quantitatively, our simulatio
lead to the conclusion that the Miller-Huse model does
belong to the dynamic universality class of model A. Sin
the mode of update is the relevant parameter explaining
parture from the Ising universality for static critical exp
nents in this model@8#, one would naturally like to know
whether or not this is also true for dynamic exponents. S
tion IV deals with this question, with the study of two mo
els with respectively sequential and checkerboard updat

IV. UPDATE RULES

A. Sequential update

The model considered here is identical to the Miller-Hu
model except for one point: the update rule. Evolution r
~14! is replaced by

xi , j
t115~124g! f ~xi , j

t !1g„f ~xi 21,j
t11 !1 f ~xi , j 21

t11 !1 f ~xi 11,j
t !

1 f ~xi , j 11
t !…. ~20!

Sites are updated one at a time, in sequential order from
top, leftmost site to the bottom, rightmost one, as in

•••→~1,1!→~2,1!→~3,1!→•••→~L,1!→

→~1,2!→~2,2!→~3,2!→•••→~L,2!→

. . .

→~1,L !→~2,L !→~3,L !→•••→~L,L !→••• ~21!

where arrows indicate the order of update between site
indices (i , j ). Consequently, boundary conditions are heli
in this case.~Note that this mode of update was term
‘‘asynchronous’’ in @8#.! A continuous transition similar to
the Ising ferromagnetic point occurs in this system too, alb
for significantly lower coupling strengthgc50.11255(5), as
measured in@8# thanks to Binder’s method. Its~measured!
static critical exponents are compatible with the static Is
universality classb/n50.117(12),n51.02(7) @8#.

The initial conditions to measure the early-time critic
properties of this transition are prepared as for the Mill
Huse model. The observed phenomenology is the same,
comparable microscopic timetmic;5, as estimated visually
~Fig. 4!. The value oftmic is confirmed by the method de
scribed in Sec. III C~local exponent!. Finite-size effects are
negligible for L>32. Measurement of the dynamic critic
exponentu8 is based on sizesL532,64,128. The number o
realizations over which ensemble averaging is performe
the same as before, 512 000 forL532,64, and 128 000 fo
L5128 ~see Fig. 4!. Our final estimate is

usequential8 50.06~2!. ~22!

Error bars take into account both statistical errors and
uncertainty due to the error bars on the location of the crit
coupling strength. This is clearly not compatible with eith
the value obtained for the Miller-Huse model@u8
l
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50.146(9)# or with the model A value@u850.193(5)#. At
this stage we have no particular understanding of the
value of u8 in this case. Finally, note that our data a
equally well fitted by a logarithmic time dependence:M (t)
; ln(t), for which no theoretical justification is at prese
available.

Measuring the exponentz is much more difficult, since
the microscopic time~or rather the time beyond which cor
rections to dominant scaling vanish and the asymptotic
gime sets in! is very large, of the order oftmic;1000. This is
clearly shown in Fig. 5, and in particular from the plots
the local exponents vs time in the inserts. Ensemble avera
are computed over typically 64 000 independent runs, fo
simulation time ofT52048. Estimates of exponents must

FIG. 4. Measure of the dynamic critical exponentu8 in the case
of sequential update. The magnetizationM (t), measured at the
critical point g5gc50.11255, is plotted vs timet in log-log scale.
Scaling is observed in all cases fort>tmic55. The solid line in both
graphs corresponds to a slope equal tou850.06. Graph~a!: the
system sizeL5128 is fixed, the initial magnetizationm052K/L2

varies betweenm052.431024 and 1.231023, for values of K
52,4,6,8,10~from bottom to top!. Graph~b!: the initial condition
K56 is fixed, for system sizesL516,32,64,128~from top to bot-
tom!. Finite-size effects are negligible.
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1598 57PHILIPPE MARCQ AND HUGUES CHATE´
derived from intervals much smaller than one decade~typi-
cally 1000<t<2048). Linear fitting in a log-log scale is thu
impractical. For that reason, we assume that the plateau
served fort.tmic in plots of the local exponents correspon
to the asymptotic value, and evaluate error bars from

FIG. 5. Measure of the dynamic critical exponentz in the case
of sequential update. The second moment of the magnetiza
M (2)(t) @graph~a!# and the temporal autocorrelation functionA(t)
@graph~b!# are plotted in log-log scale vs timet, as measured at th
critical pointg50.112 55, for zero initial magnetizationm050, up
to time T52048. The system sizes considered areL
516,32,64,128. All curves superpose forM (2)(t), and the last three
for A(t). The microscopic timetmic can be roughly evaluated t
tmic5O(1000), especially from the insets, where we plot in a lo
linear scale the local exponentsz loc(t) andd loc(t) vs time t, com-
puted forL564, over time intervals of durationt loc5100. Graph
~a!: the z values corresponding to model A (z50.817, solid lines!
and the Miller-Huse model (z50.839, dashed lines! are indicated.
Graph ~b!: the bottom and top curves respectively correspond
sizesL516 andL532,64,128~superposed!. The d values corre-
sponding to model A (d50.74, solid lines! and the Miller-Huse
model (z50.81, dashed lines! are indicated. Note that fluctuation
of z loc(t) andd loc(t) observed fort>tmic encompass the values fo
both models.
b-

e

variation of local exponent within that interval~Fig. 5!. We
obtain

zsequential50.83~6!,

dsequential50.78~8!. ~23!

The estimated value ofz, close to that of the Miller-Huse
model, leads toz52.12(15) ~assumingb/n51/8), with er-
ror bars large enough to include the uncertainty on the ex
nent of both model A and Miller-Huse model. The estimat
value ofd is closer to that of model A, but is too imprecis
to be exploited.

We are thus unable to give an estimate ofz that would
decide between the values for the model A, the Miller-Hu
model, or an eventual third number. It is clear, though, t
our estimate of exponentu8 @u850.06(2)# is not compatible
with the values of either model A@u850.193(5)# or the
Miller-Huse model@u850.146(9)#.

The above results confirm, at the dynamic level, tho
obtained in@8# for the static critical properties of Ising-like
phase transitions in systems made of coupled chaotic m
the mode of update is relevant. In@8#, the static exponents o
the sequential-update model studied above were measur
be, within numerical accuracy, those of the Ising model. T
above results show that these two models have different
namic exponents~at leastu8). Is this due to their mode o
update and/or to other factors? In the next subsection,
introduce Sakaguchi’s model, a system of coupled cha
maps designed to have exactly the static exponents of
Ising model, in order to further assess the relevance of
mode of update and that of the nature of the model for
dynamic scaling properties of Ising-like transitions.

B. Checkerboard update

A few years ago, Sakaguchi introduced a system
coupled Bernoulli maps with an exponential couplin
scheme and checkerboard update, which leads exactly to
Ising equilibrium Gibbs measure@9#.

Two continuous variables,xi , j
t and D i , j

t in @21,1#, are
defined on each site of a two-dimensional square lattice w
periodic boundary conditions. Their evolution rule reads

xi , j
t115

2

11D i , j
t

~xi , j
t 11!21, 21,xi , j

t ,D i , j
t ,

xi , j
t115

2

12D i , j
t

~xi , j
t 21!11, D i , j

t ,xi , j
t ,1, ~24!

where the~time-dependent! slopesD i , j
t of the Bernoulli maps

are calculated according to

D i , j
t 5 tanh$J~s i 21,j

t21 1s i 11,j
t21 1s i , j 21

t21 1s i , j 11
t21 !%, ~25!

with J a coupling constant. Discrete spin variables can
defined by

s i , j
t 5 sgn~xi , j

t112xi , j
t !P$21,1%, ~26!

which allows one to retain definition~16! for the fluctuating
magnetization.
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When sites are updated successively on two checkerb
lattices defined by the parity ofi 1 j , it is possible to show
that the invariant measure of this system is the same as
of the Ising model@9#:

Peq~$s i , j5mi , j%!;expJH(
i , j

mi , j~mi 21,j1mi 11,j1mi , j 21

1mi , j 11!J . ~27!

Therefore, static exponents are known exactly~Onsager so-
lution!. This was checked numerically in@8#, following the
same procedure as that used for the Miller-Huse model. S
aguchi’s model does indeed belong to the Ising universa
class for static critical exponents.

However, nothing is knowna priori on dynamical prop-
erties, which we will investigate now along the same lines
before. One advantage of Sakaguchi’s model is that the c
cal point Jc is known exactly. One source of error is thu
eliminated. One drawback is the following: the magnetiz
tion M depends on site values attwo consecutive time steps
The method used previously in order to prepare initial c
ditions with fixed small initial magnetization cannot wor
Instead, we applied the following procedure: start from ra
dom initial conditions and evolve the system at high te
perature~at low Jinit , the system is in the disordered pha
with zero mean magnetization! until it reaches by itself the
desired initial magnetizationm0. The system is then
quenched to the critical coupling. Since the magnetizatio
calculated from discrete spins, there is no dispersion on
value of initial conditions (m052K/L2, as before!. Yet, this
procedure is more costly numerically, which explains wh
in the following, the obtained statistical accuracy is som
what lower than for the previous two models studied here
practice, we useJinit50.1, before quenching toJc5 ln(1
1A2)/2.

The protocol used is the same as before. As expected,
model also exhibits a well-defined initial critical slip regim
In fact, the microscopic timetmic turns out to be equal to 0
~Fig. 6!. A possible explanation for this is that the macr
scopically correlated domains present atJinit survive the
quench toJc . Impeccable scaling is observed for the initi
growth of the magnetizationM . Reliable measurements a
possible only forL532 and 64: crossover to the nonline
relaxation regime occurs too soon (t0;60) for L516, and
L5128 is too costly to reach satisfactory statistical qua
due to the preparation of initial conditions. Ensemble av
age is done over 128 000 realizations simulated duringT
5128 time steps. From linear fits over the full interval
<t<128, we obtainu850.197(7) forL532 and 0.19(1)
for L564 ~Fig. 6!. Within error bars, no finite-size effect
are present. Our estimate is

uSakaguchi8 50.194~14!, ~28!

in good agreement with results obtained for model A@18,19#,
and not consistent with the value obtained for the Mille
Huse model.

Again, measuringz is more difficult. The scaling ofM (2)

starts late, with a fairly large microscopic time (tmic;40 for
rd
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L564, tmic;70 for L5128), estimated as before from th
evolution of local exponents. As for nonzero initial magn
tizations, ensemble average is performed over 128 000 r
izations, and the simulation time isT5128, for system sizes
up to L5128. Exponents are thus estimated over less t
one decade. However, finite-size effects are negligible
L>32. We obtain

zSakaguchi50.82~2! ~29!

~note the large error bars!. From the exact valueb/n51/8,
this leads toz52.13(5), roughly compatible with both

FIG. 6. Measure of the dynamic critical exponentu8 for Sak-
aguchi’s model. The magnetizationM (t), measured at the critica
point J5Jc ~cf. text!, is plotted vs timet in a log-log scale. In both
graphs, the solid line corresponds to a slope equal tou850.193
~model A!. Graph ~a!: the system sizeL532 is fixed, while the
initial magnetizationm052K/L2 varies betweenm057.831023

and 9.831023, for values ofK54,6,8,10~from bottom to top!. The
microscopic timetmic is equal to zero. Scaling is thus observed ov
more than two decades. Graph~b!: the initial conditionK54 is
fixed, for system sizesL516,32,64 ~from top to bottom!. The
crossover time for the smallest sizeL516 is observable:t0;60.
Finite-size effects are negligible forL532,64.
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model A and the Miller-Huse model. A longer simulatio
time (T51024), even for the largest system size (L5128)
leads to qualitatively identical results, without any quanti
tive improvement: the inset of Fig. 7~a! shows that fluctua-
tions of the local exponentz loc , computed over time inter

FIG. 7. Measure of the dynamic critical exponentz for Sakagu-
chi’s model. The second moment of the magnetizationM (2)(t)
@graph ~a!# and the temporal autocorrelation functionA(t) @graph
~b!# are plotted in a log-log scale vs timet, as measured at th
~exact! critical point J5Jc , for zero initial magnetizationm050,
up to time T5128. The system sizes considered areL
516,32,64,128, for 128 000 realizations. Graph~a!: finite-size ef-
fects become negligible forL>32. The solid and dashed lines re
spectively correspond to slopes equal toz50.817 ~model A! and
z50.839~Miller-Huse model!. In the inset, we plot the local expo
nent z loc(t) computed over intervalst loc5100, for L5128, T
51024, data averaged over 32 000 realizations. Fluctuation
z loc(t) encompass both values expected for model A and the Mil
Huse model. Graph~b!: the slope of the solid line is equal to2d
520.74 ~model A!. The inset shows, forL5128, a log-linear plot
of the ratioA(t)/t2d vs time t for the numerical valuesd50.74
~model A, bottom curve! and d50.81 ~Miller-Huse model, top
curve!. This suggests that the continuous transition of Sakaguc
model belongs to the universality class of model A for t
exponentd.
-

vals of durationt loc5100, include values ofz expected for
both model A and the Miller-Huse model.

The situation concerning the scaling behavior of the ti
autocorrelation function is somewhat more satisfactory,
spite ~or thanks to! finite-size effects: large size behavio
converges toward a value ofd that is necessarily smalle
than the Miller-Huse exponentd50.81(1). In fact, data ob-
tained for the largest size considered (L5128, T5128) are
characterized by a scaling exponentd5d/z2u8;0.75, com-
patible with the model A valued50.74(1) @cf. Fig. 7~b!#.
This finding is confirmed qualitatively by runs performed f
longer simulation times (L5128,T52048): the Miller-Huse
value is not allowed by the evolution of effective behavi
~exponent! with system size. Since we cannot cross che
with larger system size due to numerical limitations, we
not provide error bars on our estimate:

dSakaguchi;0.75. ~30!

Our numerical results show clearly that the critical d
namics of Sakaguchi’s model belongs neither to the univ
sality class of Miller-Huse model, nor to that of the seque
tially updated model studied in Sec. IV A. It is moreov
likely that Sakaguchi’s model belongs to the universal
class of model A, for both statics and dynamics: the che
erboard update of Sakaguchi’s model may thus be analog
to that of, say, Glauber dynamics of a spin system.

Our results may be summarized as follows~see Table I
for numerical values of all exponents estimated so far!: up-
date is a relevant parameter for dynamic critical exponent
Ising-like transitions of coupled chaotic map systems. N
only models with static exponents outside the Ising univ
sality class~Miller-Huse! have also their dynamic exponen
different from those of model A, but models within the Isin
static class~sequentially updated Miller-Huse, Sakaguch!
may also have non-Ising dynamic exponents~sequentially
updated Miller-Huse!. In some sense, this is not too surpri
ing since update is already known to be a relevant param
for the dynamical exponents of spin systems in the Is
static class. In the next section, we go a step further
investigate whether the universality found at the static le
in @8# among synchronously updated CMLs subsists at
dynamic level.

V. NONUNIVERSALITY WITHIN SYNCHRONOUSLY
UPDATED MODELS

In this section, we study two variants of the Miller-Hus
model: we consider first the case of a locally anisotro
coupling to three neighbors, and then the case where
piecewise linear local map~13! is replaced by a smooth map
The static exponentsb, g, andn of these variants were mea
sured to be the same, within error bars, as those of
Miller-Huse model. Given the difficulties encountered abo
when trying to estimate the exponentz, in this section we
restrict ourselves to measurements of the exponentu8, via
the early-time scaling ofM (t).

The three-neighbor variant of the Miller-Huse model w
studied in@8# because of its particularly weak corrections
scaling. Its anisotropic evolution rule reads

of
r-
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x2i , j
t115~123g! f ~x2i , j

t !1g„f ~x2i 21,j
t !1 f ~x2i 11,j

t !

1 f ~x2i , j 11
t !…,

x2i 11,j
t11 5~123g! f ~x2i 11,j

t !1g„f ~x2i , j
t !1 f ~x2i 12,j

t !

1 f ~x2i 11,j 21
t !…, ~31!

wheref is the original piecewise linear map~13!. Each site is
thus coupled to three of its nearest neighors: sites belon
to even~odd! columns of the lattice are coupled vertically
their northern~southern! neighbor only. Rule~31! is applied
synchronously to all sites, with periodic boundary con
tions. The local anisotropy introduced vanishes at la
scales. In this case, an Ising-like transition takes place f
critical coupling gc50.25118(4), estimated using Binder’s
method@8#.

The smooth map variant only differs from the Mille
Huse model by the choice of the local functionf , which
remains a chaotic, odd map of the@21,1# interval for sym-
metry reasons, but now reads

f ~x!53x24x3. ~32!

On general grounds, this smooth function, with its expand
and contracting parts, may be considered more ‘‘gener
than the original piecewise linear map. An Ising-like tran
tion also takes place in this case, for a slightly smaller criti
coupling than the Miller-Huse model:gc50.17864(4)@8#.

For both variants, hereafter referred to as ‘‘MH3’’~three-
neighbor coupling! and ‘‘C4’’ ~smooth cubic map!, the
methodology used in Sec. III to determine exponentu8 for
the original Miller-Huse model can be applied. Initial cond
tions with fixed, small magnetizationm0 are prepared using
the same procedure, and the phenomenology observed i
same. In both cases, the microscopic time is visually e
mated to betmic;5. After this time, a clear scaling behavio
is observed forM (t) ~Fig. 8!. SizesL516, 32, 64, and 128
were studied, with ensemble averaging over 512 000 rea
tions for L<64 and 128 000 forL5128. Finite-size effects
are smaller than error bars forL>32. Statistical errors onu8
are estimated by comparing values obtained for different
tial magnetizationm052K/L2 with K52,4,8 and coupling
strengthsg within the uncertainty interval ofgc . Our global
~conservative! estimates are

u~MH3!8 50.165~8! and u~C4!8 50.128~6!. ~33!

Not only are these valuesnot compatible with each other, bu
both are also at odds with the value found for the origi
Miller-Huse model@u850.146(9)#.

Numerical estimates ofu8 obtained for all models we
considered are gathered in Table II. Except in the presenc
finite-size and finite-time effects not detectable in the exp
mental conditions of our work, the above results lead to c
clude that CMLs of the Miller-Huse type exhibit differen
exponents for the dynamic critical properties of their Isin
like transitions even though they share the same static e
nents and the same mode of update.
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VI. DISCUSSION

The first conclusion about the series of numerical exp
ments conducted in this work is that nontrivial early-tim
critical dynamics occurs in phase transitions of far fro
equilibrium, coupled map lattices. The microscopic timetmic
after which scaling sets in tends to be small forM (t), gen-
erally of the same order of magnitude as for equilibriu
systems. On the other hand,tmic is typically at least one orde
of magnitude larger for the evolution of second-order qu
tities such asM (2)(t) and A(t). This is also in agreemen
with spin systems@19#. One would, however, like to under

FIG. 8. Measure of the dynamic critical exponentu8 for two
variants of the Miller-Huse model. The magnetizationM (t), mea-
sured at the critical couplinggc ~cf. text!, is plotted vs timet in a
log-log scale. The system size isL564 ~top three curves on eac
graph!, andL5128 ~bottom two curves, shifted down for clarity!.
The initial magnetization ism052K/L2. The microscopic timetmic

is equal to 5. Graph~a!: anisotropic three-neighbor coupling wit
original piecewise linear local map~13! ~model MH3!. The solid
lines correspond to slopes equal tou850.165. From bottom to top:
L5128,K58,16 andL564,K52,4,8. Graph~b!: symmetric four-
neighbor coupling with smooth cubic local map~32! ~model C4!.
The solid lines correspond to slopes equal tou850.128. From bot-
tom to top:L5128,K58,16 andL564, K53,4,8.
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TABLE II. The universality observed for the static properties of Ising-like transitions of lattices of coupled chaotic maps does n
for their dynamic critical properties: a summary of numerical estimates of the dynamical critical exponentsu8. Number~s! in brackets
correspond to the uncertainty on the last digit~s!, e.g., 0.193(5) means 0.19360.005:

2D Ising Sakaguchi Sequential C4 Miller-Huse MH3

Static universality class Ising Ising Ising Synchronous Synchronous Synchrono
Critical point ln(11A2)/2 ln(11A2)/2 0.11255(5) 0.17864(4) 0.20534(2) 0.25118(4)
u8 0.193(5) 0.194(14) 0.06(1) 0.128(6) 0.146(9) 0.165(8)
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stand whytmic is always larger for second-order quantiti
than forM (t). Intuitively, it can be argued that in order fo
the scaling regime ofM (2)(t) andA(t) to set in, the system
first needs to generate macroscopically correlated regi
i.e., M (t) must already be in its scaling regime. Th
tmic„M

(2)(t),A(t)…>tmic„M (t)…. Further, one may argue tha
macroscopically correlated regions for second-order qua
ties can only establish themselves when the magnetiza
M (t) has changed ‘‘significantly,’’ say by a factor 2. Usin
M (t);tu8, one obtainstmic„M

(2),A(t)…;21/u8. This admit-
tedly rough argument may explain semiquantitatively w
microscopic times observed for the Miller-Huse models w
sequential and synchronous update differ by two orders
magnitude: tmic(seq.)/tmic(MH);2(1/0.06)2(1/0.146);210, or
1024. In addition, finite-size corrections to scaling are a
typically much larger for second-order quantities than
M (t). A direct consequence of the observed values oftmic
and of the strength of finite-size corrections is that, in pr
tice, the exponentu8 is much easier to measure than t
exponentz, our initial goal. Thus, althoughz remains largely
out of reach in some cases, the critical initial slip meth
offers the advantage of accurate estimations ofu8.

The second conclusion of our work lies in the interpre
tion of the various dynamic exponent values we measu
which are summarized in Tables I and II.

First, and perhaps most importantly, we confirm, at
level of dynamic critical properties, the results obtained
@8# at the static level: update is a relevant parameter for u
versality classes of Ising-like transitions. Synchronously
dated coupled map models—such as the Miller-Huse mo
and its variants MH3, C4—have critical exponents differe
from those of model A both at the static and dynamic lev
For the original Miller-Huse model, our data are even co
clusive for both exponentsu8 andz.

Second, we extend to the transitions of coupled cha
maps a result already known for equilibrium spin system
the static universality class of the Ising model breaks do
at the dynamic level. The sequentially updated Miller-Hu
model and the Sakaguchi model, which are in the static Is
class, possess different dynamic exponents~in fact our data
are unambiguous only foru8). The distinction between
checkerboard and sequential update is known to be irrele
at equilibrium for both static and dynamic critical exponen
including the exponentu8 @18,19#. However, the same dis
tinction becomes relevant at the dynamic level for lattices
coupled chaotic maps. An additional interesting point is t
Sakaguchi’s model seems to possess the dynamic expo
u8 andz of model A.

Third, our data gathered for the sole exponentu8 indicate
the splitting of the ‘‘nonequilibrium universality class’’ fo
s,
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nts

the static critical properties of synchronously updat
coupled map systems showing Ising-like transitions. Varia
of the Miller-Huse model, all shown in@8# to share the same
static exponents, exhibit different values ofu8. Again, as for
spin systems, universality classes are narrower for dynam
critical exponents than for static ones. Excluding Saka
chi’s model, whose control parameter is too markedly diff
ent to allow a meaningful comparison, one may notice t
numerical estimates ofu8 for the four other models depen
monotonously on the critical couplinggc ~see Table II!:
lower values of the coupling constant correspond to a slo
coarsening process. We believe this can be understood
considering the structure of the phase space of these syst
which can be seen as a hierarchy of repellors. During co
ening, this hierarchy is explored, and thus its scal
properties—which probably depend ong—must be related to
the scaling behavior that definesu8. Of course, the above
picture will need to be substantiated in the future, but
already suggests a link between the structure of the ph
space~and hence the details of the dynamics! and exponent
u8.

In agreement with our findings, which confer a sort
‘‘maximal’’ nonuniversality to u8, the tentative picture
sketched above, invites comments on the relative statusz
and u8. Unfortunately, our attempts at measuringz ~via z
andd) have largely failed, mainly because of large values
tmic . However, data obtained for the variants C4 and MH3
the Miller-Huse model are compatible with the idea of
greater universality forz than foru8. In particular, they sug-
gest that variant C4 might possess the samez value as the
original Miller-Huse model. Thus, we would like to sugge
thatu8 may be considered as a quantity highly dependen
the details of the dynamics in nonequilibrium situation
while z, in comparison, is a more global quantity. The ind
pendence of exponentsz andu8 is consistent with this con-
jecture.

To summarize, our numerical experiments provide ad
tional contradictory evidence to the conjecture of@3# in the
case of continuous phase transitions of coupled chaotic
systems. In other words, the qualitative features of sca
are correctly predicted by renormalization-group metho
~since, e.g., the scaling behavior predicted by@13# is ob-
served!, but the same techniques fail to predict expone
quantitatively. The above remarks, though, call for more
tailed investigations of the respective role of the various
namical exponents involved in order to explain the origin
the nonuniversality reported here. In particular, the poss
different status ofz and u8 provides an interesting startin
point on which to base further research, at both the numer
and theoretical levels. Further, one would also like to kn
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whether the various persistence exponents defined and
ied recently for spin systems@23#—and particularly the
‘‘global persistence’’ exponent defined in@24#—also pertain
to continuous phase transitions of chaotic coupled map
tices, and if so, whether their numerical value also depe
on the fine details of the coarsening process following unc
related initial conditions, similarly to the dynamic expone
u8. This is the subject of ongoing research.
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